
IfhIII
st.pölten

IT-Security

Usable Privacy with ARP Spoofing

Bachelorarbeit

zur Erlangung des akademischen Grades

Bachelor of Science in Engineering (BSc)

eingereicht von

Tobias Dam

is131003

im Rahmen des

Studienganges IT-Security an der Fachhochschule St. Pölten

Betreuung

Betreuer: Dr. Markus Huber, MSc

St. Pölten, August 12, 2016

(Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

*

Fachhochschule St. Pölten GmbH, Matthias Corvinus-Straße 15, A-3100 St. Pölten,T: +43 (2742) 313 228, F: +43 (2742) 313 228-339, E:office@fhstp.ac.at, I:www.fhstp.ac.at

Ehrenwörtliche Erklärung

Ich versichere, dass

• ich diese Bachelorarbeit selbständig verfasst, andere als die angegebenen Quellen und Hilfsmittel

nicht benutzt und mich sonst keiner unerlaubten Hilfe bedient habe.

• ich dieses Bachelorarbeitsthema bisher weder im Inland noch im Ausland einem Begutachter/einer

Begutachterin zur Beurteilung oder in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

• diese Arbeit mit der vom Begutachter/von der Begutachterin beurteilten Arbeit übereinstimmt.

Der Studierende/Absolvent räumt der FH St. Pölten das Recht ein, die Bachelorarbeit für Lehre- und

Forschungstätigkeiten zu verwenden und damit zu werben (z.B. bei der Projektevernissage, in Publika-

tionen, auf der Homepage), wobei der Absolvent als Urheber zu nennen ist. Jegliche kommerzielle

Verwertung/Nutzung bedarf einer weiteren Vereinbarung zwischen dem Studierenden/Absolventen und

der FH St. Pölten.

Ort, Datum (Unterschrift Autor/Autorin)

Tobias Dam ii

Abstract

The ascending utilisation of third-party frameworks and web content provides developers with a straight-

forward way to integrate other platforms and advertisements. Nonetheless, the prevalence of third-party

content enables organisations to collect an abundance of user data as well as to analyse the users’ brows-

ing behaviour and the feeble submission policies of some advertisement companies are a recipe for

malware distribution. This bachelor thesis presents a method for using the security attack ARP spoofing

to increase users’ Internet privacy. The implemented approach routes the traffic of all devices on the local

network through the users upribox by crafting ARP packages and therefore impersonating the gateway

for those devices. The solution was developed as a module, which installs the Python ARP spoofing

Apate and also handles configuration, for the existing project upribox. In conjunction with the newly

developed module, the upribox is able to filter web traffic, protect the user from web analytic techniques

and block advertisements which may be used to distribute malware, for any device on the network with-

out requiring the reconfiguration of those devices. Furthermore, potential enhancements of the created

approach as well as the implemented upribox module are discussed.

Keywords: ARP spoofing, Internet privacy, network security, upribox

Tobias Dam iii

Contents

1. Introduction 1

1.1. Problem . 1

1.2. Pivotal Questions and Main Contributions . 3

1.3. Structure of the Thesis . 4

2. Theoretical Background & State-of-the-Art 5

2.1. ARP . 5

2.2. ARP Spoofing . 6

2.3. Defence Measures Against ARP Spoofing . 7

2.3.1. S-ARP . 8

2.3.2. TARP . 8

2.3.3. MR-ARP . 9

2.3.4. KARP . 9

2.4. Usable Privacy Box (upribox) . 10

2.5. Ansible . 11

2.6. Django . 11

2.7. Scapy . 12

2.8. Redis . 12

2.9. Neighbor Discovery Protocol . 12

2.10. Internet Group Management Protocol . 14

3. Design 16

3.1. General . 16

3.2. Apate . 17

3.3. Modes of Operation . 18

3.3.1. Holistic Spoofing . 18

3.3.2. Selective Spoofing . 20

Tobias Dam iv

Contents

3.4. Host Discovery Methods . 21

3.4.1. Traditional approach . 21

3.4.2. IGMP general query requests . 22

4. Evaluation and Results 23

4.1. Methodology . 23

4.2. Changes of Existing upribox Ansible Roles . 23

4.3. New Ansible Role . 25

4.4. Apate . 29

4.4.1. Requirements . 30

4.4.2. General Information . 31

4.4.3. Holistic Spoofing . 32

4.4.4. Selective Spoofing . 37

4.4.5. Host Discovery Methods . 40

4.5. Apate Redis . 41

4.6. Util . 45

4.7. Changes to the Django Web Interface . 46

4.8. Test Environment . 47

4.9. Results . 48

5. Discussion 50

5.1. Answering the Research Questions . 50

5.1.1. How is it possible to increase Internet privacy with the help of ARP spoofing? . . 50

5.1.2. How can a found approach be implemented? 50

5.1.3. Which possibilities except ARP spoofing could be used for increasing the Inter-

net privacy? . 51

5.2. Criticism of the Thesis and the Implemented Approach 51

5.3. Future Work . 52

5.3.1. Enhancing the Web Interface . 52

5.3.2. Migration to IPv6 . 52

6. Conclusion 54

A. Source Code 55

A.1. tasks/main.yml . 55

Tobias Dam v

Contents

A.2. tasks/apate_state . 56

A.3. handlers/main.yml . 57

A.4. templates/apate . 57

A.5. templates/apate.service . 59

A.6. templates/logrotate.j2 . 59

A.7. templates/config.json . 59

A.8. environments/development/group_vars/all.yml . 60

A.9. environments/production/group_vars/all.yml . 63

A.10.files/apate . 66

A.10.1. apate.py . 66

A.10.2. lib/apate_redis.py . 68

A.10.3. lib/daemon_app.py . 74

A.10.4. lib/extended_runner.py . 82

A.10.5. lib/misc_thread.py . 83

A.10.6. lib/sniff_thread.py . 86

A.10.7. lib/util.py . 92

A.10.8. requirements.txt . 94

A.11.upribox_interface . 94

A.11.1. urls.py . 94

A.11.2. more/views.py . 96

A.11.3. more/jobs.py . 98

A.11.4. more/templates/more.html . 99

A.12.django/files/upri-config.py . 101

References 116

Tobias Dam vi

1. Introduction

Topics of this bachelor thesis are the utilisation of ARP spoofing for positive applications as well as

the enhancement of users’ Internet privacy. The topics were chosen, since the importance of protecting

privacy is steadily growing. Due to the rapidly increasing trend to integrate third-party content and

advertisements into the own website or application, evermore privacy and IT security threats for example

data collection trough web analytics or malvertising arise [1], [2].

1.1. Problem

Since several years, a very large and still rising number of websites and other systems that process web

information use frameworks, features and website content of third-party organisations.

This trend in developing websites with the help of other organisations’ contributions and integrating other

third-party content provides the possibility to enrich user experience and provide new and unprecedented

functionality. Some of those functions are the easy implementation of advertising, web analytics and the

integration of social networks [1].

Unfortunately, this trend also entails some drawbacks, especially relating to user privacy and security.

Due to third-party content being present on many different websites, those are able to retrieve a lot of

data like the users Internet browsing behaviour, the users’ habits and interests.

Mayer et al. [1] describe the data, organisations may be able to retrieve, as follows:

“Web browsing history is inextricably linked to personal information. The pages a user visits can reveal

her location, interests, purchases, employment status, sexual orientation, financial challenges, medical

conditions, and more. Examining individual page loads is often adequate to draw many conclusions

about a user; analyzing patterns of activity allows yet more inferences.” [1]

Another noteworthy threat, which arose from the increased utilization of third-party advertisement frame-

works, is malvertising. The Semantec Internet Security Threat Report 2016 mentions that malvertising

is on the rise since 2015 and provides attackers with the possibility of infecting user with malicious

code through advertisements [2, p. 22]. Many providers of advertisement networks do not apply strict

requirements for submitting ads, therefore creating an easy way of distributing malware and infecting

Tobias Dam 1

1. Introduction

users.

As a result of various affairs relating to security issues that have been announced publicly, an increasing

number of people are worried about their privacy:

“The study also found that two thirds (64%) of users are more concerned today about online privacy than

they were compared to one year ago.” [3]

The percentage stated above shows, that the majority of Internet users is aware of the rising threat to

Internet privacy and many of them use traditional IT security solutions to protect themselves.

The most famous of those traditional security solutions is antivirus software. A very common method

of operation of Antivirus software is signature-based detection, which searches for specific patterns in

programs that identify malicious software.

Another option to protect oneself against malvertising is the utilisation of ad blocking software, which

prevents the website from loading advertisements and therefore guards against the infection with mal-

ware.

Alongside those conventional measures to increase privacy and IT security in general, there are also

rather maverick options, which use techniques well-known relating to security attacks.

In October 2005, Mark Russinovich of Sysinternals discovered a special variant of DRM1 software, that

enforced active protection of music files [4]. Active protection means that a program has to be installed

on the users’ computer, which afterwards interferes with attempts to copy the music files. The XCP

(Extended Copy Protection) software that was installed by CDs shipped by Sony-BMG used a second

component, which tried to hide its own and the anti-copy protection software’s existence. Therefore

Sony-BMG used a so-called rootkit to hide the DRM program and hinder users from illegally copying

music files.

Many tools like antivirus and parental control software analyse the Internet traffic of users in order to

prevent attacks for instance drive-by downloads, unwanted advertisement or protect children’s online

activities [5]. A majority of these tools also tries to protect encrypted HTTPS traffic. They intercept the

users’ traffic by inserting an active man-in-the-middle (MITM) proxy, which separately encrypts traffic

from the proxy to the client and from the proxy to the server. By bypassing the original security of the

encrypted traffic by using the MITM proxy and afterwards analysing and again encrypting the data, this

software is able to add an additional layer of security and control.

Another established security attack with also positive applications is ARP poisoning, which is explained

in the chapters 2.1, 2.2 and 2.3. ARP spoofing can be used to intercept traffic and impersonate other

computers. Because of this characteristic, ARP spoofing by various software for failover clusters for

1Digital Rights Management

Tobias Dam 2

1. Introduction

instance Heartbeat.

Heartbeat is a software package for High Availability Clusters running Linux, which provides the ability

to failover from one computer to another [6, p. 111].

If the primary server of a cluster fails, another server of the cluster has to take over the workload [6, p.

122], [7, p. 30]. Therefore, the new server has to inform the other hosts on the network, that it is now

using the shared IP address of the cluster. This announcement is done through gratuitous ARP requests,

which are broadcasted to all hosts [6]. These packets contain the shared IP address as sender and target

protocol address as well as the MAC address of the new server as protocol sender address. After receiving

the request, the host updates its ARP cache with the entry and is now able to communicate with the new

server of the cluster.

A second application, which makes use of ARP spoofing to provide failover redundancy, is OpenBSD

CARP [8]. The Common Address Redundancy Protocol (CARP) allows a group of hosts to share the

same IP address and is usually used by high-availability firewalls. The master host sends regular heartbeat

messages to the backup hosts in order to signal a normal state of operation. If the master host fails, one

of the backup hosts will take over the master role. This procedure and also the advanced load balancing

feature of CARP use crafted ARP packages in order to inform other hosts and clients.

The ascending threats against users Internet privacy through third-party content and advertisements as

well as the feasibility of using rather maverick methods in order to establish IT security led to the question

whether such methods could be used to increase the users Internet privacy, especially methods that are

currently rather uncommon for protecting privacy like ARP spoofing.

1.2. Pivotal Questions and Main Contributions

Due to the problem described in section 1.1 the aim of this bachelor thesis is to answer the following

pivotal question:

Can ARP spoofing be a valid mechanism to defend privacy?

In order to answer aforementioned pivotal question as well as to find and implement a proper solution,

following sub questions need to be considered.

• How is it possible to increase Internet privacy with the help of ARP spoofing?

• How can a found approach be implemented?

• Which possibilities except ARP spoofing could be used for increasing the Internet privacy?

Tobias Dam 3

1. Introduction

The main contributions of the bachelor thesis include:

• The development of a concept in order to use ARP spoofing for increasing the users’ Internet

privacy.

• The practical implementation of the previously developed concept.

• The definition of needed steps in order to further enhance the solution and increase privacy.

1.3. Structure of the Thesis

Section 1 explains the problem, states the pivotal question and main contributions. In section 2 the

fundamentals of the Address Resolution Protocol, special use cases, attacks and mitigation techniques

are explained. Additionally, other used technologies needed for finding a solution are presented. Section

3 provides information on the design of the solution. The practical implementation of the design and the

environment to test the solution are described in section 4. Furthermore, the used research methods are

described. Section 5 answers the research questions as well as presents future work and section 6 deals

with the conclusion.

Tobias Dam 4

2. Theoretical Background & State-of-the-Art

This chapter describes several topics and theories like ARP, ARP spoofing and defence measures, which

were needed in order to solve the problem presented at section 1.1.

2.1. ARP

The Address Resolution Protocol (ARP), as specified by Plummer [9], is used to translate addresses of

variable length of a specific protocol to 48 bit Ethernet addresses, also called Media Access Control

(MAC) addresses.

ARP aims to build a bridge between the logical addresses of different layer 3 protocols and physical

addresses which are used on layer 2. Therefore, it provides a simple mapping of <protocol, address>

pairs into Ethernet addresses with the help of a translation table, also called ARP cache [9], [10].

The intended workflow of this protocol corresponds to the following example. Assuming that host A

wants to send an IP packet to host B and both hosts are on the same network, host A has to translate the

IP address of host B into an Ethernet address. If the host does not know the Ethernet address of the other

host, it has to broadcast an ARP request packet.

The ARP packet consists of several fields, including:

• the IP address of host A as sender protocol address,

• the MAC address of host A as sender hardware address,

• the IP address of host B as target protocol address,

• the protocol type,

• the opcode, which specifies if the packet is a request or a response.

In an ARP request the target hardware address field is empty, because the sender does not know the hard-

ware address of the target. The host, which receives the ARP request first, checks whether it understands

the specified hardware type and protocol type. The second step is to update any existing entry for the

Tobias Dam 5

2. Theoretical Background & State-of-the-Art

received <protocol, sender protocol address> pair in the translation table. In case there is no entry for

this pair in the translation table, a new entry is added. After this action is performed, the receiving host

checks the opcode field of the packet and decides if it needs to send an ARP response. An ARP response

is created by swapping the sender hardware field and sender protocol field with the according target

fields of the request, adding the sender hardware address and changing the opcode to ares_op$reply. The

response packet is then sent through an unicast to host A [9].

It should be noted that the protocol specification of the Address Resolution Protocol highlights the two

following aspects:

“Notice that the <protocol type, sender protocol address, sender hardware address> triplet is merged

into the table before the opcode is looked at.” [9]

“Notice also that if an entry already exists for the <protocol type, sender protocol address> pair, then

the new hardware address supersedes the old one.” [9]

This means, that a host will update an entry or create a new entry in the translation table regardless

whether the ARP packet type is a request or a response. “This is on the assumption that [sic] communca-

tion is bidirectional; if A has some reason to talk to B, then B will probably have some reason to talk to

A.” [9]

A special use case of ARP is the so called gratuitous ARP. This feature consists of an ARP request with

the sender protocol address and the target protocol address set to the IP address of the sending host. This

can be used to determine whether there is another host with the same IP address configured or to notify

other hosts that the Ethernet address of the host has been changed, which seldom occurs [10].

2.2. ARP Spoofing

Due to the fact of ARP being a stateless protocol and therefore processing unrequested ARP replies, as

mentioned in section 2.1, it is an easy task for an attacker to poison the ARP cache of other devices.

It is possible to get a host to add a fake entry to the ARP cache by sending a crafted ARP request or reply

packet with the desired source hardware address to the victim. The victim will update its translation table

or add a new entry, since the opcode of the ARP packet is checked after the packet has been processed

[9], [11, pp. 10].

“Hence an attacker only needs to send a spoofed ARP request (inherently broadcasted) to poison the

cache of all the hosts in a LAN.” [11, p. 11]

ARP replies are distinguished between “normal" ARP replies and unsolicited responses [11, p. 10],

which are not anticipated by a host.

ARP spoofing is often used by attackers to perform man-in-the-middle (MITM) attacks. A traditional

Tobias Dam 6

2. Theoretical Background & State-of-the-Art

MITM attack using ARP spoofing works by corrupting the ARP cache of two victims, with the result

that host A communicates with the attacker if it wants to send information to host B and vice versa.

Additionally, the attacker forwards the received packets to the original recipient, in order to tunnel the

data between the victims and to be able to read and manipulate the data [12].

As mentioned by Samineni, Barbhuiya & Nandi [12] this method “[...] comes with an inherent drawback

that the attacker has to leave his own (though temporary/crafted) MAC address on the target nodes.” [12]

Samineni et al. [12] also specify two variations of the traditional MITM attack using ARP spoofing:

• the “Stealth man-in-the-middle (SMITM) attack”

• the “Semi-stealth man-in-the-middle (SSMITM) attack”.

The SMITM attack works similar to the common MITM attack, except that the attacker states the broad-

cast MAC address FF:FF:FF:FF:FF:FF as the sender hardware address instead of his own MAC address,

which enables the attacker to stay unrecognised [12]. As a result the two victims are sending pack-

ets via broadcast each time they want to communicate. Due to the information being broadcasted and

the attacker only receiving a copy of the sent information, it is not possible to manipulate the packets

on-the-fly.

In the case of one host being secured and filtering ARP packets with the broadcast MAC address set

as sender hardware address, it is possible to use the SSMITM attack [12]. During this attack only the

unsecured host receives the crafted ARP packet with the broadcast address. The secured host gets a

“traditionally” forged ARP reply, which contains the hardware address of the attacker instead of the

unsecured hosts address. If the unsecured host A communicates with the secured host B, the broadcasted

packets of host A are discarded by host B. The attacker redirects the information from host A, which

was send via broadcast, to host B using his MAC address. Due to the attacker also redirecting received

packets from host B to host A, he is able to tunnel the communication and manipulate the forwarded

data. The advantage of this method is the fact, that the physical address of the attacker is only known to

one victim and therefore appears ordinary.

The disadvantage of the two methods mentioned by Samineni et al. [12] is the simple detectability by

checking whether an IP address is translated to the broadcast address.

2.3. Defence Measures Against ARP Spoofing

In order to protect systems from MITM attacks using ARP spoofing various mitigation and prevention

approaches have been developed.

Tobias Dam 7

2. Theoretical Background & State-of-the-Art

The simplest method to prevent entries of the ARP cache being changed by malicious ARP packets is to

configure static ARP entries [13, pp. 186-188]. In spite of the fact that these static entries are manually

set along with the desired hardware and MAC addresses, this method is not applicable for dynamic

networks1 and large networks, because of the high maintenance effort needed to keep the ARP tables

updated.

2.3.1. S-ARP

The “Secure Address Resolution Protocol” (S-ARP) is a more sophisticated solution, which provides an

message authentication for ARP reply messages using public key cryptography [14]. This is achieved by

appending an additional header field containing authentication information and the digital signature of

the S-ARP reply as payload to the original ARP packet, which means that S-ARP is backward compatible

to ARP. A “Authoritative Key Distributor” (AKD) has to be set up in the network, which contains a

certificate from each host with the according public key and IP address. When a host wants to verify a

received ARP reply and is not already in possession of the public key of the sender, the host is able to

receive the needed certificate from the AKD.

The disadvantage of this method was mentioned by Bruschi et al. [14] in section “7. Conclusions and

Future Work”: “Another issue concerns the elimination of the single point of failure represented by the

AKD.” [14]

2.3.2. TARP

Another approach, which is based on cryptographic authentication is the “Ticket-based Address Reso-

lution Protocol” (TARP) [15]. TARP performs message authentication by appending an attestation, a

so called ticket, to each ARP reply packet as additional payload. These tickets contain several fields

including the MAC address and IP address of a host, the expiration time of the ticket and the signature

of the ticket. TARP requires the setup of a “Local Ticket Agent” (LTA), which issues and signs tickets

using its private key for each host. A host that receives a TARP reply is able to verify the signature of

the ticket with the LTAs public key and check if the received <IP address, MAC address> pair is valid.

The drawback of TARP is the vulnerability to active host impersonations2 and DoS attacks through ticket

flooding.

1A dynamic network is a network where hosts are often added and removed.
2Active host impersonation in this case means to impersonate a victim by spoofing the MAC address and using a previously

captured ticket. This is possible until the ticket expires.

Tobias Dam 8

2. Theoretical Background & State-of-the-Art

2.3.3. MR-ARP

The “MITM-Resistant Address Resolution Protocol” (MR-ARP) consists of a long-term <IP address,

MAC address> mapping table in addition to the ARP cache and voting-based conflict resolution [16].

The long-term table is used to save accepted <IP address, MAC address> mappings for a certain amount

of time3.

When a host receives an ARP request with an <IP address, MAC address> pair, that is not registered

in the ARP cache, the long-term table is checked. If it already contains a matching entry, the lifetime

of this entry is extended. When the long-term table has a conflicting entry, the host sends 50 ARP

request packets to the stored MAC address. The old entry is preserved after receiving an ARP reply,

otherwise the new mapping is added to the long-term table. If the received <IP address, MAC address>

pair is registered in neither the ARP cache nor the long-term table, the voting-based conflict resolution

process is started. This process consists basically of asking other hosts for their entries to the received

<IP address, MAC address> pair. When the host does not receive any replies, it registered the received

mapping in the ARP cache and in the long-term table. Otherwise the MAC address which obtained over

50 per cent of the vote replies is registered.

2.3.4. KARP

A recent attempt to solve the ARP spoofing problem is the “Kerberos Secured Address Resolution Proto-

col” (KARP) which integrates the Kerberos protocol4 into ARP [18]. KARP consists of multiple KARP

clients and one KARP server. Each client stores its IP address as an ID as well as two shared secret keys

with the server.

The server has two main parts, which handle the authentication:

• the “Authentication Service” (AS)

• the “Ticket Granting Service” (TGS).

The AS provides “Single Sign On” (SSO) through authenticating the clients and so called “Ticket Grant-

ing Tickets” (TGT). The TGS issues “Destination Tickets” that authorize a client to send a KARP request

to another client.

The procedure of KARP is described in following example:

Client A is currently not logged in and wants to send a KARP request to client B. Initially, client A has

3The default value for the timer is 60 minutes.
4“Kerberos provides a means of verifying the identities of principals, (e.g., a workstation user or a network server) on an open

(unprotected) network." [17]

Tobias Dam 9

2. Theoretical Background & State-of-the-Art

to send a “Ticket Granting Ticket Request” containing his ID to the AS in order to log in. If client A is

authorized, the AS responds with a TGT. In the next step, client A sends a “Destination Ticket Request”

to the TGS, which consists of the destination ID (of client B), the TGT and an authenticator (IP and MAC

address of client A). The TGS answers to valid requests with an encrypted “Destination Ticket”, which

proves the identity of client A through its IP and MAC addresses. Now client A is able to broadcast a

new KARP request with the received “Destination Ticket” to all other clients. Only client B is able to

decrypt the ticket, because the ticket was requested for client B as destination. Client B compares the

specified IP and MAC addresses in the KARP header with those from the ticket and sends a KARP reply

if the request was valid. The reply message is encrypted with a newly generated ticket for client A, so

that client A is also able to verify the KARP message.

Bakhache et al. [18] mention that in course of their performance test KARP performed the address

resolution considerably faster than the other solutions S-ARP [14] and TARP [15].

2.4. Usable Privacy Box (upribox)

The Usable Privacy Box is a project of the Institute of IT Security Research [19] at St. Pölten University

of Applied Sciences, which was conducted by Dr. Markus Huber, MSc. The project was funded by

“netidee 2014 der Internet Foundation Austria (IPA)” and aims to be a tool for increasing the privacy of

Internet users while focussing on intuitive usability [20].

The primary hardware component of the upribox is a Raspberry Pi, an affordable, credit card-sized

computer which is plugged into the users’ modem. Additionally needed hardware is listed on the official

GitHub repository [21].

After the successful setup of the upribox, the user can connect their devices to the automatically created

wireless network. The upribox automatically filters unencrypted HTTP5 traffic and protects users from

miscellaneous web analytic techniques, web beacons and similar threats to Internet privacy [20].

Additional services are the provision of an OpenVPN6 server, which allows to connect to the upribox

from virtually anywhere and the possibility to route the whole traffic through Tor7.

The upribox software mainly consists of two parts:

• the Django web interface

5“The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia infor-

mation systems.” [22]
6An open-source application framework which implements virtual private networks to create secure connections.
7Tor “[...] is a distributed overlay network designed to anonymize TCP-based applications like web browsing, secure shell,

and instant messaging.” [23, p. 1]

Tobias Dam 10

2. Theoretical Background & State-of-the-Art

• and multiple Ansible roles.

The web interface of the upribox uses the Django web framework, as mentioned in section 2.6 and is

written in Python. It allows the user to intuitively make several configuration changes like modifying the

SSID and the password of the created wireless networks.

The setup of the upribox including the installation of the web interface and several configuration changes

are done using the Ansible Automation Framework, which is described in section 2.5. This part of

the software is structured in so-called roles which provide flexibility, easy separation of production and

development code and simple extensibility.

The actual filtering of the web traffic is done via utilising Privoxy8 and Dnsmasq9. Several files contain-

ing blocking rules are used to indicate which DNS requests or web contents should be blocked.

2.5. Ansible

Ansible is an open-source IT automation framework for configuring and orchestrating computers and is

developed by Red Hat Inc [24]. The Ansible framework is based on Python and uses YAML10 for the

description of various tasks.

Ansible uses playbooks to define the configuration and the tasks, which it should carry out. Those can

be written in one single file or be split up in multiple folders and files, so-called roles. A role can

perform several tasks, for instance installing updates, configuring services or copying files, can define

handlers which are called as soon as a specific condition is met and can also define numerous variables

for adapting the configuration for specific systems or environments.

Because of security considerations, Ansible uses OpenSSH, one of the most peer-reviewed open-source

components, for the data transport. The system is also decentralized as it only needs existing credentials

to access remote machines and is also able to use various authentication systems like Kerberos or LDAP

[24].

2.6. Django

Django is an open-source web development framework developed by the Django Software Foundation

[25]. The framework is written in Python and follows the well-established Model-View-Controller soft-

ware pattern. Django’s design is highly modular as the developer is able to structure the project into sev-

8Privoxy is a web proxy with advanced filtering functions.
9Dnsmasq is a simple DNS and DHCP server.

10YAML Ain’t Markup Language (YAML) is a human-readable data exchange format.

Tobias Dam 11

2. Theoretical Background & State-of-the-Art

eral application, which are performing different tasks. Another advantage of Django is the circumstance,

that it focusses on security and it is developed to be scalable and therefore uses available resources. A

“web page" provided by Django consists of a model, a view and a template part. The model is used to

manage data of the web application, whereas the view provides the logic for processing HTTP requests

and returning a response. The template defines the information which should be presented to the user.

2.7. Scapy

Scapy is a multipurpose packet manipulation tool developed by Philippe Biondi [26], [27]. The program

is written in Python, internally uses libpcap11 or WinPCap on Windows and is able to perform various

tasks regarding network traffic manipulation. Those tasks include forging and decoding packets of vari-

ous network protocols as well as sniffing for specific packets with user defined reactions. Scapy enables

the user to define each layer of a packet, stack those layers upon another and set values of protocol fields

as desired. It does not restrict the user by enforcing values, that are valid per protocol specification and

also allows to forge a packet combining protocols that usually are not used together or in a different

order.

2.8. Redis

Redis is an open-source, in-memory key value store written in the C programming language and is devel-

oped by Salvatore Sanfilippo and Redis Labs [28]. It functions as a NoSQL database12 and is commonly

utilised as a cache or message broker. Redis supports various data structures, for instance strings, hashes

as well as sets and despite of working with in-memory datasets, this data is stored persistently on the

disk by default. Another function provided by Redis is to subscribe or publish to a channel and therefore

to react to certain events. Such an event is the “expired event”, which is sent after a key reaches the

specified time to live (TTL) [29].

2.9. Neighbor Discovery Protocol

The Neighbor Discovery (ND) for IP version 6 (IPv6), as specified by Narten et. al. [30], is used to

perform various tasks for IPv6, which were previously performed by the Address Resolution Protocol

(ARP), as described in section 2.1, the ICMP Router Discovery (RDISC) and ICMP Redirect (ICMPv4).

Those tasks include:
11Implementation of the pcap api for capturing network traffic for Unix-like systems.
12NoSQL databases use different techniques to store data than for example the tables of relational databases.

Tobias Dam 12

2. Theoretical Background & State-of-the-Art

• the Router and prefix discovery,

• the Address Resolution,

• the Neighbor Unreachability Detection,

• the Redirect Function.

The router and prefix discovery function of ND enables the location of neighouring IPv6 routers and

the distribution if the address prefixes and configuration parameters used for the stateless address auto-

configuration [30, p. 38]. Hosts of the network can send router solicitation messages to receive router

advertisements, which are used for the address configuration of the host and the default router selection

[30, pp. 53-58].

Another part of the Neighbor Discovery Protocol is the address resolution and neighbor unreachability

detection function, which is composed of neighbor solicitation and neighbor advertisement messages [30,

pp. 22-25]. The way of functioning of this part of ND is very similar to the Address Resolution Protocol

used by IPv4. Therefore the main aim of the address resolution is to provide a mapping between the

IPv6 address and the link-layer address. The neighbor solicitation and neighbor advertisement messages

consist of several fields, including:

• the IP source address,

• the IP destination address,

• the ICMP type,

• the ICMP code,

• the ICMP checksum,

• the ICMP target address,

• the optional ICMP source/target link-layer address.

In case host A needs to send data to another host B on the same network and does not know the link-local

address of host B, it sends a neighbor solicitation messages to the other host as well as creates a neighbor

cache entry in the INCOMPLETE state [30, pp. 22-25], [30, pp. 61-67]. The IP source address field of

the message contains the IPv6 address of host A and the IP destination address field is set to the IPv6

address of host B or a solicited-node multicast address13 corresponding to the IPv6 address of host B.

13IPv6 multicast address computed of a node’s unicast or anycast address [31, p. 16].

Tobias Dam 13

2. Theoretical Background & State-of-the-Art

The ICMP type of the neighbor solicitation message is 135 and the ICMP code is 0. Host A needs to set

the ICMP target address to the IPv6 unicast address of host B and specify its own link-layer address in the

ICMP source link-layer address field. The specification of the own link-layer address is only mandatory,

when the IP destination address field contains a multicast address.

After host B receives the neighbor solicitation message from host A, it answers by sending a neighbor

advertisement message with its own IPv6 address as IP source address and the IPv6 address of host A as

IP destination address [30, pp. 22-25]. The ICMP type of this message is 136 and the ICMP code is 0.

The ICMP target address is set to the same value of the corresponding field of the neighbor solicitation

message and the target link-layer address is filled with the link-layer address of host B.

Additionally, there are three ICMP flags for the neighbor advertisement message:

• the router flag (R), which indicates if the sender is a router,

• the solicited flag (S), which indicates if this message is a response to a neighbor solicitation mes-

sage,

• the override flag (O), which indicates whether the advertisement should override existing neighbor

cache entries.

Host B also updates an existing entry in its neighbor cache entry or creates a new entry in state STALE

[30, pp. 61-67]. Once host A receives the valid advertisement it updates its neighbor cache entry and

sets the state to REACHABLE.

The redirect function consists of redirect messages, which are sent by routers to inform hosts about a

better first-hop router or that a destination is a neighbor of the host [30, p. 73]. A host that receives such

a redirect messages modifies its destination cache, in order to send subsequent traffic to the destination

specified in the redirect message [30, p. 76].

2.10. Internet Group Management Protocol

The Internet Group Management Protocol version 3 (IGMPv3), as specified by Cain et. al.[32], enables

systems to report their multicast group memberships to neighboring multicast routers. IGMP version 3

distinguishes between two types of IGMP version 3 messages:

• Membership queries with the type number 0x11,

• Membership report with the type number 0x22.

Tobias Dam 14

2. Theoretical Background & State-of-the-Art

IGMPv3 membership queries are sent by multicast routers to learn the multicast reception state of hosts

on the network [32, pp. 8-11]. The most important fields of the membership query packets are the type

field, which contains the value 0x11, the group address, the number of sources and the source address

fields. The group address is set to the IP multicast address of the multicast group, which should be

queried. In case the enquirer is only interested in the memberships of specific hosts, those hosts are listed

in the source address fields and the number of sources is set accordingly. There are also additional fields,

including the checksum, the suppress router-side processing (S) flag, the querier’s robustness variable

(QRV) and the querier’s query interval code (QQIC), which are used to manage the transmission and

processing behaviour of messages.

Depending of the values of specific fields, there are three types of queries [32, pp. 12]:

• The “General Query”, which is sent to learn the multicast group memberships of all hosts on the

network. The group address field and the number of sources are set to zero, while an IP destination

of 224.0.0.1 is used.

• The “Group-Specific Query”, that is used to query the members of a single multicast group. The

group address field and the IP destination contain the IP address of the multicast group of interest.

Additionally, the number of source is set to zero.

• The “Group-and-Source-Specific Query” is similar to the “Group-Specific Query”, but is also

limited to the hosts of interest, which are specified through the source address fields. The number

of source is set accordingly to the number of source address fields.

IGMP membership queries are answered by sending membership reports, which contain a type of 0x22,

a checksum, the number of group records and the according group records [32, pp. 12-17]. The most

important information of a group record is the record type and the multicast address the record applies

to. The record type indicates different states, for instance that the host is listening to or filtering a specific

multicast group or that it wants to start or stop listening to a specific multicast group.

Tobias Dam 15

3. Design

This chapter presents the theoretical design of the solution, created to solve the pivotal question and the

sub questions mentioned in section 1.2.

3.1. General

Due to the functioning principle of ARP spoofing, spoofing individual clients on the network by trans-

mitting forged ARP packets and subsequently redirect traffic generated by those clients, this technique

alone is not sufficient for defending user’s Internet privacy directly. Rather than merely redirecting the

data, which is received and transmitted by the user’s devices, the information also needs to be refined or

filtered in order to prevent threats against privacy. Therefore, a solution utilising ARP spoofing to protect

Internet privacy furthermore requires a functionality to process the Internet traffic transmitted by other

devices.

A constantly enhanced open-source project which provides aforementioned necessary feature is the up-

ribox, as described in section 2.4. The upribox aims to be an easy to use, zero configuration device,

which helps users to protect their Internet privacy by filtering the Internet traffic of their own devices.

Filtering the data is accomplished by processing the data with Privoxy and custom filter rules. In order

to use those features, users have to connect their devices to the wireless network created by the upribox.

This essential user interaction somewhat contradicts with the zero configuration ideology of the project,

though it could be prevented by automatically redirecting the entire network traffic through the upribox,

thus enabling automated filtering of every device.

For the purpose of answering the research question, mentioned in section 1.2 and to resolve the usability

issue of the upribox, the approach was realised as an extension for the upribox.

The deployment of the upribox is performed with the help of Ansible, specified in section 2.5, and

organising the different functions of the project is done via Ansible roles. The developed approach

makes use of the existing upribox source code and is integrated into the project as a new Ansible role.

This Ansible role named “arp” performs two major tasks:

• making preparations in order to install the ARP spoofing daemon,

Tobias Dam 16

3. Design

• and the installation of the Apate daemon itself.

The needed preparations include creating necessary directories, copying startup scripts for the daemon,

installing necessary additional software and adding or modifying configuration files. The redirection

of the network traffic is done by the Apate ARP spoofing daemon, whose structure is explained in the

section 3.2.

3.2. Apate

The daemon, which handles the spoofing of the clients on the network, is implemented as a well-behaved

Python Unix daemon, called Apate1. This program knows the functions start, stop and restart and is

automatically started and stopped with the help of startup scripts.

The configuration file of Apate is located at the path /etc/apate/config.json and stores the con-

figuration options in the JSON format, because of its easy readability for humans and to be consistent

with Ansible’s local facts, which are also stored using the JSON format.

The configuration file determines the values of the following configuration options:

• pidfile, the path of the pidfile of the daemon,

• logfile, the path of the logfile of the daemon,

• interface, the network interface that should be used to perform ARP spoofing,

• stdout, the path of the file which contains the content of standard output,

• stderr, the path of the file which contains the content of standard error,

• mode, the definition of the mode of operation that Apate should use.

After the daemon is started, it begins to check the validity of the configuration file and initialises general

properties, needed in order to spoof the clients of the network. Those initialisation activities include

gathering information about the gateway and the network configuration of the spoofing device. The next

step after the daemon finished the preparations, is the spoofing of the network devices itself. Apate knows

two different modes of operation for this task, which are explained in section 3.3. In case the daemon

is stopped, the original ARP cache entries are restored in order to allow the clients on the network to

communicate normally.

1Apate is the Greek daemon of deceit [33, pp. 2670].

Tobias Dam 17

3. Design

3.3. Modes of Operation

The Apate ARP spoofing daemon knows two different ways of functioning, which can be configured to

be one of the following values via the configuration option mode:

• holistic, which enables the holistic spoofing mode as described in section 3.3.1.

• selective, which enables the selective spoofing mode as described in section 3.3.2.

Each mode consists of a regular reoccurring part, that spoofs the ARP cache entries of devices on the

network with forged ARP packets. For the purpose of additionally handling devices, that are brought

online while the first part is not active or clients, which ask for the gateway, the second part acts as

listener for ARP packets. The third part restores the “normal” network operation of all hosts on the

network and the gateway.

3.3.1. Holistic Spoofing

The holistic spoofing mode of Apate makes use of broadcast gratuitous ARP request packets for manip-

ulating the ARP table entries of the user’s devices. In the course of this the Ethernet destination is set

to the broadcast address ff:ff:ff:ff:ff:ff as well as the ARP hardware destination field. Both,

the Ethernet source field and the ARP hardware source field, are filled with the hardware address of the

network interface specified by the interface configuration option. In order to create a valid GARP

request packet, the protocol source and the protocol destination are set to the IP address of the gateway

and the opcode is set to 1, being a request. Each host on the network receives this broadcasted packet

and updates its existing ARP table entries.

In this mode the daemon generates gratuitous ARP request packets for every possible client on the net-

work and sends them to the gateway. The packets are unicast requests with the Ethernet source set to

the hardware address of the gateway and the ARP protocol source and protocol destination being the IP

address of the possible host. As mentioned in section 2.1, if a client receives an ARP request it only up-

dates existing entries and does not create new ones dissimilar to the actions after receiving ARP replies.

Therefore, the gateway’s ARP tables is not flooded by creating unnecessary entries.

Due to the generation of packets for every possible host and the spoofing of clients by broadcast GARP

requests, the need for a host discovery part and the possibility to store the information of discovered

hosts disappears. This implies lower resource requirements, than the selective spoofing mode of Apate,

which performs such tasks.

A drawback of this mode of operation is the huge number of packets, which have to be created to spoof

the gateway, if the upribox is used in a big network, for example a network with a subnetmask in CIDR-

Tobias Dam 18

3. Design

Notation of /8. The generation and also the transmission of the vast amount of packets takes a rather

long time, which causes a delay of spoofing of the devices. Therefore, it is likely that the network devices

will not be spoofed properly. As a consequence of this behaviour, this mode is more suitable for rather

small networks (/24).

Another important part of Apate’s holistic spoofing mode is the listener, that is used to react to certain

incoming packets. This component listens for incoming ARP requests and distinguishes between unicast

requests, which are intended for the upribox itself and broadcast ARP requests, which are transmitted

to or received from the gateway. After processing a gratuitous ARP request, which changes an existing

ARP cache entry, some systems ask the “new” device via unicast ARP requests, if it really has the stated

IP address. If those systems do not receive an answer in a certain amount of time, they ask for the device

with the stated IP address by sending a broadcast ARP request. This would cause the real gateway to send

an answer to the spoofed device, which could result in “unspoofing” it. Therefore, the listener handles

incoming ARP requests with an Ethernet destination set to the hardware address of the upribox, so as to

answer the requests before any broadcast packets are sent.

The other type of processed packets are broadcast ARP requests with a protocol source or destination

being the IP address of the gateway. The fields of those packets are used to spoof both the transmitter

and the receiver of the request or to be more accurate, the gateway and the involved host. The ARP reply

intended for manipulating the transmitter is mostly created by swapping source and destination fields of

the sniffed packet. The Ethernet destination is set to the former Ethernet source, furthermore the protocol

destination and the hardware destination are filled with the according original source values. In order to

impersonate the initial target, the IP address of the target is used as protocol source and the hardware

address of the network interface of the upribox is the hardware source.

The former receiver is spoofed by generating an unicast ARP reply. The Ethernet destination and the

hardware destination contain the hardware address of the original target, which has to be learned by

sending a proper broadcast ARP request. The hardware address of the upribox is used as hardware

source, whereas the protocol source and protocol destination use the former values.

Due to some systems not accepting ARP replies immediately after receiving the first ARP reply of the

gateway, for instance after the configuration of the IP address via DHCP, the transmission of the packets,

generated in response to incoming broadcast requests, is delayed for a specific amount of time.

The third part of the holistic spoofing mode preserves the “normal” network operation by restoring the

original ARP table entries. A GARP broadcast request is generated to tell network hosts the address

of the real gateway. The Ethernet destination as well as the hardware destination contain the broadcast

address, whereas the protocol source and protocol destination use the IP address of the gateway. The

Tobias Dam 19

3. Design

hardware source matches the hardware address of the gateway. In order to correct the modified entries

of the gateway, ARP request packets are generated for every possible client on the network. This results

in the existing clients sending ARP replies to the gateway, exposing their real addresses.

3.3.2. Selective Spoofing

A disadvantage of the holistic spoofing mode is the vast amount of packets, which are necessary to spoof

the gateway and impersonate every possible client on the network. Generating and sending these packets

takes plenty of time, which might hamper the successful redirection of the network traffic. The selective

spoofing mode of Apate addresses this problem by only generating packets for existing hosts. This is

enabled through the utilisation of a database to save entries for existing devices persistently. Each entry

stores information about the network address according to the IP address of the device, the IP address

itself, the host’s hardware address and if spoofing should be enabled. The selective spoofing mode

requires one or more host discovery methods for detecting available devices in contrast to the holistic

spoofing mode. Similar to the other mode of operation, this mode also consists of a periodic part, a

listener and another part, which handles the return to the “normal” network operation.

The main task of the reoccurring part is the creation of two unicast ARP replies for each device entry

in the database. The first packet spoofs the client, by using the stored hardware address of the device as

value of the Ethernet destination and the hardware destination, whereas both source fields are filled with

the upribox’s hardware address. The protocol destination contains the stored IP address of the device and

the protocol source is set to the gateway’s IP address.

The second packet manipulates the arp entry of the gateway by impersonating the device. Both hardware

source fields contain the hardware address of the upribox and both hardware destination fields are set to

the hardware address of the gateway. This time, the protocol source contains the stored IP address of the

device and the protocol destination is set to the gateway’s IP address.

The functionality of the listener corresponds to the respective part of the holistic spoofing mode and adds

the creation of device entries. In case the listener receives a unicast ARP request, which is intended for

the upribox, it stores a device entry for the transmitting device. An entry is created for the transmitting

device along with an entry for the receiving device, if a broadcast ARP request destined to or received

from the gateway is processed. Despite of the holistic mode only sniffing for incoming ARP requests,

this part also saves device entry for the sender after ARP replies are obtained. The spoofing of the newly

added network devices is enabled per default.

As opposed to the second part of Apate’s holistic mode, the selective mode is not limited to incoming

ARP requests and also processed incoming IGMP report messages. As further explained in section 3.4,

Tobias Dam 20

3. Design

IGMP general query messages are used as an additional host discovery method. Clients on the network

answering the IGMP general query answer by sending an IGMP report message stating their multicast

group membership. This answer packet contains the needed information to generate a device entry for

the discovered host. Furthermore, the newly added device and the gateway are spoofed using layer two

and three data of the received packet.

The first task of the third part, the restoration of the original network behaviour, is performed similarly

to the holistic spoofing mode. The ARP table entries of the clients are corrected via broadcast GARP

requests. Due to the utilisation of the database, the daemon only has to create packets for existing clients

during the second task. Unlike the holistic spoofing mode, the gateway’s entries are modified directly by

forging ARP reply packets for known hosts. The Ethernet destination and hardware destination are set

to the hardware address of the gateway, while the hardware source contains the stored hardware address

of the device. Additionally, the protocol source is filled with the device’s IP address and the protocol

destination is the IP address of the gateway.

3.4. Host Discovery Methods

As mentioned in section 3.3.2, the selective spoofing mode makes use of a database in order to store

entries for existing network devices. Those entries are created via the listener by sniffed incoming

packets. For this reason host discovery methods are utilised, so that hosts on the network transmit these

processible packets.

Alongside the traditional host discovery method for local networks, there are also other rather maverick

techniques.

3.4.1. Traditional approach

A well-known and established host discovery approach used on local networks is to perform an ARP

scan. This method is executed by generating ARP broadcast requests for every possible network host.

Existing clients are answering with ARP replies in response to those packets, which are afterwards

processed by the listener. In case of the daemon being used in a rather big network (/8), the generation

of a vast number of packets takes a long time, as already explained in section 3.3.1. This problem

might cause a delay during the host discovery, but does not interfere with the spoofing of already known

devices.

Tobias Dam 21

3. Design

3.4.2. IGMP general query requests

In order to avoid the aforementioned problem, IGMP general queries can be used to discover network

hosts. Therefore, IGMP general queries with a type value of 0x11 and the group address field set to

224.0.0.1, which is the multicast address including all hosts on the local network, are sent. This

causes network devices, which are subscribed to at least one multicast group, to answer with IGMP

report messages. Those report message packets contain the information needed to create device entries

inside their layer two and layer three fields.

A drawback of this host discovery method is the rather high unreliability. Hosts which are not sub-

scribed to any multicast groups, are not answering the general query requests and hence can not be

discovered using this method. Also some devices might not answer general queries and only respond

to “Group-Specific Queries”. In order to mitigate this undesirable behaviour, the host discovery method

could ask for memberships of often used multicast addresses. One possibly suitable multicast address is

224.0.0.252 used by the Link-local Multicast Name Resolution (LLMNR), which is used to provide

name resolution on the same local link [34, pp. 1-4]. Another potentially useful multicast address is

224.0.0.251 of the Multicast Domain Name Server protocol, also providing name resolution on the

local link [35, pp. 1-6].

Tobias Dam 22

4. Evaluation and Results

This section describes the research methodology and presents the specific implementation of the solution

of the research question. In the following section, the structure as well as source code of the upribox

extension are explained.

4.1. Methodology

The approach was implemented as an Ansible role and as an extension for the existing upribox source

code. Several changes of the existing upribox source code were needed to allow the filtering of the

spoofed and redirected network traffic. The chosen programming language for developing the Apate

ARP spoofing daemon is Python, because most of the original source code is also written in this language.

Furthermore, Scapy, which is described in section 2.7, is used for forging and transmitting packets, since

it is a well-established project relating to those tasks. The developed approach was constantly tested

during development, inside a dedicated network with access to the Internet.

4.2. Changes of Existing upribox Ansible Roles

As mentioned in section 2.4, the filtering of the web traffic on the upribox are handled by Privoxy and

Dnsmasq. In order to provide the full privacy enhancing functionality not only to hosts connected to the

wireless networks, but also to hosts on the local wired network, some configuration options needed to be

changed.

The original configuration of Dnsmasq does not enable listening for DNS requests on the network inter-

face “eth0”. The following line in the configuration template roles/dns/templates/dnsmasq.j2

has to be replaced, to also provide DNS services for spoofed clients:

1 except-interface=eth0

Simply uncommenting the line is sufficient for fulfilling this purpose:

1 #except-interface=eth0

Tobias Dam 23

4. Evaluation and Results

Because DHCP services must not be enabled for the network interface “eth0”, this feature is disabled by

adding following line to roles/dns/templates/dnsmasq.j2:

1 no-dhcp-interface=eth0

Another additional line for the same configuration template is needed, because the change, that enables

DNS services on the interface “eth0”, might create a vulnerability to DNS amplification attacks1. If

the interface “eth0” is publicly exposed to the Internet, it may be used as an open DNS forwarder and

therefore for an DNS amplification attack. This issue is prohibited by adding local-service to the file

roles/dns/templates/dnsmasq.j2. Due to this configuration option, Dnsmasq will only accept

DNS queries from local subnets [37].

Due to the configuration option listen-address 0.0.0.0:8118, Privoxy on the upribox listens on

every network interface on port 8118 for requests. The following lines of the Privoxy configuration file

roles/privoxy/templates/config restrict the access to both upribox wireless networks and the

OpenVPN network:

1 permit-access 192.168.55.0/24

2 permit-access 192.168.56.0/24

3 permit-access 192.168.155.0/24

The access for those three networks needs to be preserved, but also the network, which interface “eth0”

belongs to, has to be included. Because the IP configuration of this interface is dynamically retrieved

through DHCP and so as not to provide services to the public Internet, the private network address spaces,

as specified by Rekhter et ak. [38], are granted access rights to access Privoxy.

1 permit-access 10.0.0.0/8

2 permit-access 172.16.0.0/12

3 permit-access 192.168.0.0/16

DNS requests of spoofed network clients pass the upribox, but are not processed by the Dnsmasq service

of the upribox. They are just forwarded to the configured DNS server of the clients and therefore those

clients do not benefit from the privacy enhancing DNS blacklist feature and are unable to access the

upribox web interface. Thus, following iptables rule was appended to the “nat” table’s “PREROUTING”

chain inside the roles/iptables/templates/iptables.upribox.ipv4, which rewrites passing

by DNS requests, so that they are processed by the upribox.

1 -A PREROUTING -i eth0 -p udp -m udp --dport 53 -j REDIRECT --to-ports 53

1DNS amplification attacks use recursive DNS servers to direct DNS traffic to a specific target and use the fact, that small

requests can trigger large responses [36, p. 3].

Tobias Dam 24

4. Evaluation and Results

4.3. New Ansible Role

The newly created Ansible Role “arp” performs several tasks, including the installation of the Apate

ARP spoofing daemon, making necessary preparations and changing other configurations.

The deployment of the new role via Ansible is enabled by adding the following line to the roles section

of upriboxes.yml and also local.yml:

1 - { role: arp, tags: ["arp"] }

This change enables the manual deployment of the role as well as the automated deployment during the

update process and associates the tag “arp” with the eponymous role.

The new Ansible role consists of a directory “arp” inside the folder roles and has the following struc-

ture:

1 +---arp

2 | +---files

3 | | \---apate

4 | | | apate.py

5 | | | requirements.txt

6 | | |

7 | | \---lib

8 | | apate_redis.py

9 | | daemon_app.py

10 | | extended_runner.py

11 | | misc_thread.py

12 | | sniff_thread.py

13 | | util.py

14 | | __init__.py

15 | |

16 | +---handlers

17 | | main.yml

18 | |

19 | +---tasks

20 | | apate_state.yml

21 | | main.yml

22 | |

23 | \---templates

24 | | config.json

25 | | logrotate.j2

26 | |

27 | \---init

Tobias Dam 25

4. Evaluation and Results

28 | apate

29 | apate.service

The directory files contains the source code files of the Apate ARP spoofing daemon, which are copied

onto the upribox by the “arp” role. These files are further explained in section 4.4.

The directory tasks includes the Ansible playbook as main.yml and the file apate_state.yml,

which is used to check whether local facts are available and apply those if that is the case. The provided

variable apate_enabled indicates if Apate should be enabled at startup. Thereby the content of the file

apate_state.yml is as follows:

1 ---

2 - set_fact:

3 apate_enabled: "{{ default_settings.apate.general.enabled if not (ansible_local

is defined and ansible_local.apate is defined and ansible_local.apate.

general is defined) else ansible_local.apate.general.enabled | default(

default_settings.apate.general.enabled) }}"

The main.yml file contains several important tasks, which are performed by this Ansible role. The

following first part of the file includes the aforementioned variable apate_enabled and other_env,

which is used to remove logfiles of the other environment. Additionally, the Apate daemon is copied to

/opt/apate.

1 ---

2 - include: ../../common/tasks/other_env.yml

3 - include: apate_state.yml tags=toggle_apate

4

5 - name: create working directory for apate daemon

6 file: path=/opt/apate state=directory recurse=yes mode=0771 owner=root group=root

7

8 - name: copy the apate files

9 copy: src=apate/ dest=/opt/apate owner=root group=root mode=0774

10 notify: restart apate

The next step is to make the Apate daemon start after boot, if the variable apate_enabled is yes.

1 - name: copy apate init script

2 template: src=init/apate dest=/etc/init.d/apate owner=root group=root mode=0755

3 notify: restart apate

4

5 - name: copy apate service file

6 template: src=init/apate.service dest=/etc/systemd/system/apate.service owner=root

group=root mode=0755

Tobias Dam 26

4. Evaluation and Results

7 notify: restart apate

8 register: service_file

9

10 - name: systemctl daemon-reload

11 shell: /bin/systemctl daemon-reload

12 when: service_file.changed

13

14 - name: configure apate service

15 service: name=apate state=’{{ "started" if apate_enabled|bool else "stopped" }}’

enabled=’{{ apate_enabled|bool }}’

16 tags:

17 - toggle_apate

The following tasks copy the configuration file of Apate and remove the logfiles of the other environ-

ment, for example the development environment if production is active, as well as provide a logrotate

configuration file. Furthermore, additional software, as listed below, is installed:

• python-virtualenv, which is used to install the dependencies of Apate,

• tcpdump, which provides functionality used by Scapy,

• redis-server, which is used as key-value database by Apate’s selective spoofing mode.

1 - name: create apate config dir

2 file: path=/etc/apate state=directory recurse=yes mode=0771 owner=root group=root

3

4 - name: copy apate config file

5 template: src=config.json dest=/etc/apate/config.json owner=root group=root mode

=0755

6 notify: restart apate

7

8 - name: install virtualenv, tcpdump

9 apt: name={{ item }} state="{{ apt_target_state }}" force=yes update_cache=yes

cache_valid_time="{{ apt_cache_time }}"

10 with_items:

11 - python-virtualenv

12 - tcpdump

13 - redis-server

14

15 - name: install requirements to virtualenv

16 pip: requirements=/opt/apate/requirements.txt virtualenv=/opt/apate/venv

17 notify: restart apate

Tobias Dam 27

4. Evaluation and Results

18

19 - name: remove log files from other environment

20 file: path={{other_env.default_settings.log.general.path}}/{{other_env.

default_settings.log.apate.subdir}} state=absent

21

22 - name: modify logrotate.d entry

23 template: src=logrotate.j2 dest=/etc/logrotate.d/apate mode=0644

The last part of the file main.yml enables the Redis server at startup and modifies the configuration file,

so that keyspace event messages for the expiration of keys are emitted.

1 - name: change keyspace event notification of redis-sever

2 lineinfile:

3 dest: /etc/redis/redis.conf

4 regexp: ’^notify-keyspace-events’

5 line: ’notify-keyspace-events "Ex"’

6 notify: restart redis

7

8 - name: enable redis server

9 service: name=redis-server enabled=yes

The file main.yml inside the directory handlers provides tasks, which can be triggered by the play-

book, if certain tasks performed changes to the target. The following tasks restart either the Apate

daemon or the Redis server, if according files have changed.

1 ---

2 - include: ../tasks/apate_state.yml tags=toggle_apate

3

4 - name: restart apate

5 service: name=apate state={{"restarted" if apate_enabled|bool else "stopped"}}

6

7 - name: restart redis

8 service: name=redis-server state=restarted

The files inside the folder templates/init handle the startup of the Apate daemon. The file apate

is a init script, which creates necessary directories containing the pidfile and the logfiles as well as

provides the options start, stop and restart. The script makes use of the Linux Standard Base

(LSB) comment conventions for init scripts2 and hereby determines services, which are required to start

before Apate, like networking services. The content of the file is available in the appendix A.4.

2The comment conventions are used ensure that init scripts are started and stopped correctly corresponding to their require-

ments [39, pp. 394-396].

Tobias Dam 28

4. Evaluation and Results

In order to provide the same functionality for systems using systemd to manage services, the service file

apate.service, in appendix A.5, also specifies the aforementioned options and defines dependencies

of the service. Additionally, the option Restart=on-failure causes systemd to restart the daemon

in case of a crash.

The file templates/logrotate.j2, which is copied to etc/logrotate.d/apate, defines the ac-

tions logrotate should take for Apate’s logfiles. The files are rotated weekly or after the reach a size of

10 MB. The file is available in appendix A.6.

The file templates/config.json serves as the configuration file of the Apate ARP spoofing daemon

and contains the options already mentioned in section 3.2. The file contains the available options in the

JSON format as follows:

1 {

2 "pidfile": "{{ default_settings.apate.pid.dir }}/{{ default_settings.apate.pid.

file }}",

3 "logfile": "{{ default_settings.log.general.path }}/{{ default_settings.log.

apate.subdir }}/{{ default_settings.log.apate.logfiles.logname }}",

4 "interface": "eth0",

5 "stdout": "{{ default_settings.log.general.path }}/{{ default_settings.log.apate

.subdir }}/{{ default_settings.log.apate.logfiles.stdout }}",

6 "stderr": "{{ default_settings.log.general.path }}/{{ default_settings.log.apate

.subdir }}/{{ default_settings.log.apate.logfiles.stderr }}",

7 "mode": "{{ default_settings.apate.mode }}"

8 }

This file does not already contain the actual values of the options, because these values can differ de-

pending on the active environment. These values are defined inside the group_vars/all.yml file of

the according environment, either environments/production or environments/development,

and are automatically inserted during the deployment via Ansible, when it is copied to /etc/apate/

config.json. These variables are defined inside the “apate" sections of aforementioned files as well

as in appendix A.8 and A.9.

4.4. Apate

Following the design of the Apate ARP spoofing daemon, presented in section 3.2, the directory files/

apate contains all necessary source code files for implementing the well-behaved Python Unix daemon.

All source code files are provided under appendix A.10.

Tobias Dam 29

4. Evaluation and Results

4.4.1. Requirements

Several third-party software and python libraries are needed in order to provide the functionality of the

Apate daemon. As specified in section 4.3, the playbook main.yml installs the additional software

packages python-virtualenv, tcpdump and redis-server.

The package python-virtualenv provides the opportunity to separately install Python packages in

specific versions, while not interfering with different instances needed by other applications. Therefore

python-virtualenv was chosen for the separation of the Python dependencies of Apate.

Installing tcpdump enables Scapy to compile BPF3 filters, which are used inside Scapy’s sniff func-

tionality [41].

Apate’s selective sniffing mode requires a Redis server as key value datastore for storing several device

entries. Redis was chosen, because of its support for various data structures as well as the possibility

to subscribe to messages, as mentioned in section 2.8. Furthermore, the information, that needs to be

stored, does not require relationships or a tabular structure, which was also a reason for relying on this

NoSQL database.

In addition to the third-party software, various Python libraries are needed by the Apate daemon:

• redis,

• hiredis,

• scapy,

• python-daemon,

• netaddr,

• netifaces.

The redis Python library provides an interface for the Redis key value store by supporting most of the

native Redis commands. It also implements functionality for subscribing to channels and listening for

specific messages. This library uses the hiredis package for parsing the values returned by the Redis

server.

Scapy, as described in section 2.7, is used for sniffing purposes as well as forging and the dissection of

packets by both the holistic spoofing mode and the selective spoofing mode of Apate. This project was

chosen due to its diverse capabilities as well as the non-restrictive approach.

3The Berkeley Packet Filter (BPF) enables user-level processes to capture packets and uses a register-based filter machine for

filtering out packets [40, p. 259].

Tobias Dam 30

4. Evaluation and Results

Apate’s daemon behaviour is implemented via the python-daemon package, which is conform to the

Python Enhancement Proposal (PEP) 3134. This package provides everything necessary to create a well-

behaved Unix daemon written in Python. Since this package is well-established and has an alignment

with the PEP 3134 guideline, it was selected.

The libraries netaddr and netifaces provide several networking functionalities, whereas netifaces

retrieves the hardware and IP addresses of network interfaces and netaddr offers functions for process-

ing IP addresses. Those packages are essential for the operation of the Apate ARP spoofing daemon.

All Python requirements are installed during the execution of the playbook main.yml to the virtual

environment /opt/apate/venv using the file requirements.txt. The exact versions of necessary

libraries and additional dependencies of those are listed inside files/apate/requirements.txt in

appendix A.10.8.

4.4.2. General Information

As almost every program, the Apate daemon possesses a main part, which is run by the init script or

manually, if preferred by the user. This part is written inside the files/apate/apate.py file. The

full content can be reviewed in appendix A.10.1.

This script specifies the location of the configuration file, as detailed in section 4.3 and 3.2, as well as

mandatory configuration options inside the following two constants:

1 CONFIG_FILE = "/etc/apate/config.json"

2 """Path of the config file for the Apate ARP spoofing daemon."""

3 CONFIG_OPTIONS = (’logfile’, ’pidfile’, ’interface’, ’stderr’, ’stdout’, ’mode’)

4 """Options that need to be present in the config file."""

Inside the main() function, a check whether the script runs with root privileges is performed. Apate uses

several functionalities, for instance networking services through Scapy, which requires root privileges.

Afterwards, the configuration file is loaded via the Python json package and the mandatory options are

checked. In case that an error occurs during processing the configuration file, the daemon exists with an

appropriate error code. The next step is to initialise the logging facility and to determine if Apate should

use the holistic spoofing mode or the selective spoofing mode. The last remaining action prepares the

DaemonApp and finally starts the daemon.

Both modes of operation of the Apate daemon are defined by inheriting from the class _DaemonApp

located in the file files/apate/lib/daemon_app.py. These subclasses define the actual behaviour

of the daemon and need to perform several actions, which are used during both modes and are therefore

implemented inside the superclass.

Tobias Dam 31

4. Evaluation and Results

The superclass implements following methods:

• __init__(self, logger, interface, pidfile, stdout, stderr),

• __return_to_normal(self),

• exit(self, signal_number, stack_frame),

• run(self).

All methods are described inside the function by using Python documentation strings, including the

method parameters and their expected types. The following code shows the documentation of the param-

eters of the __init__ method:

1 Args:

2 logger (logging.Logger): Used for logging messages.

3 interface (str): The network interface which should be used. (e.g. eth0)

4 pidfile (str): Path of the pidfile, used by the daemon.

5 stdout (str): Path of stdout, used by the daemon.

6 stderr (str): Path of stderr, used by the daemon.

The __init__ method uses aforementioned parameters to initialise the daemon, create logfiles, retrieve

information about the IP and hardware addresses of the used network interface as well as the gateway.

Additionally, a list, including every possible IP address on the specific network, except addresses like the

network address or the broadcast address, is created for further use inside the modes. In case the daemon

fails during the initialisation phase, it raises a DaemonError to indicate this.

The methods run and __return_to_normal are just method stubs, which need to be overridden by the

subclasses. The first mentioned method determines the main part of the mode of operation, including the

way the spoofing of network clients is done. The second method is used to return the “normal” network

state by “unspoofing” the clients.

The exit method is used by the python-daemon library and terminates the daemon after executing

__return_to_normal.

4.4.3. Holistic Spoofing

The design of Apate’s holistic spoofing mode, as specified in section 3.3.1, is implemented with following

classes:

• the HolisticDaemonApp,

• the HolisticSniffThread.

Tobias Dam 32

4. Evaluation and Results

The HolisticDaemonApp class is located inside the file files/apate/lib/daemon_app.py, which

is available in appendix A.10.3, and inherits from the abstract _DaemonApp.py class. Expanding the

__init__ method of the superclass, it also initialises an instance of the HolisticSniffThread,

which is used to sniff incoming ARP packets. This thread is defined to be a daemon thread, meaning it

terminates as well if the main thread exits.

Following code defines the way the holistic mode spoofs clients periodically:

1 def run(self):

2 # start sniffing thread

3 self.sniffthread.start()

4

5 # generates a packet for each possible client of the network

6 # these packets update existing entries in the arp table of the gateway

7 packets = [Ether(dst=self.gate_mac) / ARP(op=1, psrc=str(x), pdst=str(x))

for x in self.ip_range]

8 # gratuitous arp to clients

9 # updates the gateway entry of the clients arp table

10 packets.append(Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway,

pdst=self.gateway, hwdst=ETHER_BROADCAST))

11 while True:

12 sendp(packets)

13 time.sleep(self.__SLEEP)

At first the sniffing thread, which is described below, is started. Afterwards, a list packets, containing

gratuitous ARP request packets for spoofing the gateway, is created using the list of possible IP addresses

created inside the __init__ method. These packets are used to impersonate network clients and update

existing ARP cache entries of the gateway, while not adding new entries for non-existent ones. A single

broadcast GARP request packet is appended to packets, for spoofing all clients on the network. Every

host receives this broadcast and updates its ARP table entry for the gateway with the upribox’s hardware

address. As the content of these packets does not change, they are only created once and sent every

__SLEEP seconds.

The constant __SLEEP is implemented as a class-level variable and defaults to 20 seconds:

1 __SLEEP = 20

2 """int: Defines the time to sleep after packets are sent before they are sent anew.

"""

The ARP requests inside packets are sent using Scapy’s sendp method, because the Ethernet layer of

the packet is specified manually. This method inserts “logical” values for non-specified field, for instance

the Ethernet source field. In this case the hardware address of the upribox is filled in as Ethernet source

Tobias Dam 33

4. Evaluation and Results

address automatically. Scapy’s sendp method performs best, when multiple packets are sent at once by

providing them inside a list. Therefore all ARP requests are stored inside the list packets and sent via

a single method call.

At termination of the daemon the method exit is called, which in turn executes _return_to_normal:

1 def _return_to_normal(self):

2 # clients gratutious arp

3 sendp(

4 Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=self.gateway,

hwdst=ETHER_BROADCAST,

5 hwsrc=self.gate_mac))

6 # to clients so that they send and arp reply to the gateway

7 sendp(Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=str(self.

network), hwsrc=self.gate_mac))

This method follows the same principle as the run method. The network clients are spoofed per broad-

cast gratuitous ARP request with the IP address and hardware address of the original gateway. The entries

of the gateway’s ARP cache are corrected by requesting the hosts on the network to send ARP replies to

the gateway. This is also done by generating broadcast ARP requests for every possible device.

Sniffing of incoming ARP requests is performed by the HolisticSniffThread, which inherits the

abstract class _SniffThread, a subclass of threading.Thread.

The abstract class defines following methods:

• __init__(self, interface, gateway, mac, gate_mac),

• run(self),

• _packet_handler(self, pkt),

• stop().

The __init__ method initialises several variables storing information about the network interface and

the gateway as well as calls the constructor of threading.Thread.

The run method uses Scapy’s sniff functionality to start sniffing for specific packets and calling

_packet_handler for every received packet.

Following class-level variables are used as parameters for the sniff method:

1 _DELAY = 7.0

2 """float: Delay after which packets are sent."""

3 _SNIFF_FILTER = "arp and inbound"

4 """str: tcpdump filter used for scapy’s sniff function."""

Tobias Dam 34

4. Evaluation and Results

5 _LFILTER = staticmethod(lambda x: x.haslayer(ARP))

6 """function: lambda filter used for scapy’s sniff function."""

The aforementioned method is called as below:

1 sniff(prn=self._packet_handler, filter=self._SNIFF_FILTER, lfilter=self._LFILTER,

store=0, iface=self.interface)

The parameter prn defines the method, that should be called after a packet of the specified type is

received. The packet is provided as a parameter for further processing. The second argument filter

specifies a string containing a BPF filter, which is used to filter packets before they are handed to Scapy

and provides performance advantages. The value of _SNIFF_FILTER is a filter, which only passes

incoming ARP packets through. Due to a race condition problem, that may result in receiving packets

that should be filtered by the BPF filter, the remaining packets are additionally filtered by a Python

method provided via lfilter. The constant _LFILTER provides a lambda function checking if the

packet has an ARP layer. store=0 indicates, that received packets should be passed to the function in

prn and not be stored. The interface of the upribox is specified via iface.

The method _packet_handler is a method stub, which should be overridden by subclasses. In case

the thread is not started as a daemon thread, it can be canceled by calling the static stop method.

The HolisticSniffThread class uses all provided methods of the superclass and only overrides the

_packet_handler method.

1 def _packet_handler(self, pkt):

2 """This method is called for each packet received through scapy’s sniff

function.

3 Incoming ARP requests are used to spoof involved devices.

4

5 Args:

6 pkt (str): Received packet via scapy’s sniff (through socket.recv).

7 """

8 # when ARP request

9 if pkt[ARP].op == 1:

10

11 # packets intended for this machine (upribox)

12 if pkt[Ether].dst == self.mac:

13 # this answers packets asking if we are the gateway (directly not

via broadcast)

14 # Windows does this 3 times before sending a broadcast request

15 sendp(Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=pkt[ARP].pdst, pdst

=pkt[ARP].psrc, hwdst=pkt[ARP].hwsrc, hwsrc=self.mac))

Tobias Dam 35

4. Evaluation and Results

16

17 # broadcast request to or from gateway

18 elif pkt[Ether].dst.lower() == util.hex2str_mac(ETHER_BROADCAST) and (

pkt[ARP].psrc == self.gateway or pkt[ARP].pdst == self.gateway):

19 # spoof transmitter

20 packets = [Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=pkt[ARP].pdst,

pdst=pkt[ARP].psrc, hwsrc=self.mac, hwdst=pkt[ARP].hwsrc)]

21

22 # get mac address of original target

23 dest = self.gate_mac

24 if pkt[ARP].pdst != self.gateway:

25 # send arp request if destination was not the gateway

26 dest = util.get_mac(pkt[ARP].pdst, self.interface)

27

28 if dest:

29 # spoof receiver

30 packets.append(Ether(dst=dest) / ARP(op=2, psrc=pkt[ARP].psrc,

hwsrc=self.mac, pdst=pkt[ARP].pdst, hwdst=dest))

31

32 # some os did not accept an answer immediately (after sending the

first ARP request after boot)

33 # so, send packets after some delay

34 threading.Timer(self._DELAY, sendp, [packets]).start()

The if statement inside line 9 checks if the received packet is a ARP request, because only requests

are further processed. The next step is to examine, whether the packet is intended for the upribox. As

already explained in section 3.3.1, the listener answers ARP requests asking if the upribox is the gateway

via unicast request. In case the packet is a broadcast ARP request and received from or transmitted to the

gateway, as inspected in line 18, both the transmitter and the receiver of the packet are spoofed. First, the

packet to spoof the transmitter is created using the values of the original packet. By using the hardware

address of the upribox as hardware source in the variable hwsrc, the daemon impersonates the gateway.

In order to spoof the original target, the hardware address has to be resolved by the daemon itself. The

method get_mac is used to perform this task, as described in section 4.6. After the daemon learned the

hardware address, it generates the second packet and sends both after a delay specified in _DELAY. Some

systems do not accept incoming GARP requests immediately after receiving the first ARP reply of the

gateway, which the reason for this delay. This difficulty is described in section 3.3.1.

Tobias Dam 36

4. Evaluation and Results

4.4.4. Selective Spoofing

The implementation of Apate’s selective spoofing mode following the design, as presented in section

3.3.2, consists of several classes:

• the SelectiveDaemonApp,

• the SelectiveSniffThread,

• the PubSubThread,

• the IGMPDiscoveryThread,

• the ARPDiscoveryThread.

The selective spoofing mode implies storing information about existing clients on the network. The

classes IGMPDiscoveryThread and ARPDiscoveryThread retrieve this information. Those classes

are described in section 4.4.5.

Similar to the HolisticDaemonApp the SelectiveDaemonApp inherits the _DaemonApp superclass

and overrides the inherited methods. The __init__ method is used to additionally initialise an

ApateRedis instance, specified in section 4.5 and the four different threads mentioned above. All

threads are determined to be daemon threads.

The class also defines a class-level variable, used as delay inside the periodic part:

1 __SLEEP = 5

2 """int: Defines the time to sleep after packets are sent before they are sent anew.

"""

Essentially, the run method of the selective mode attains the same result as the according method of the

HolisticDaemonApp, albeit the internal actions are different.

1 def run(self):

2 self.sniffthread.start()

3 self.arpthread.start()

4 self.psthread.start()

5 self.igmpthread.start()

6

7 # lamda expression to generate arp replies to spoof the clients

8 exp1 = lambda dev: Ether(dst=dev[1]) / ARP(op=2, psrc=self.gateway, pdst=dev

[0], hwdst=dev[1])

9

10 # lamda expression to generate arp replies to spoof the gateway

Tobias Dam 37

4. Evaluation and Results

11 exp2 = lambda dev: Ether(dst=self.gate_mac) / ARP(op=2, psrc=dev[0], pdst=

self.gateway, hwdst=self.gate_mac)

12

13 while True:

14 # generates packets for existing clients

15 # due to the labda expressions p1 and p2 this list comprehension, each

iteration generates 2 packets

16 # one to spoof the client and one to spoof the gateway

17 packets = [p(dev) for dev in self.redis.get_devices_values(filter_values

=True) for p in (exp1, exp2)]

18

19 sendp(packets)

20 time.sleep(self.__SLEEP)

At first all threads are started in order to begin sniffing packets and discovering hosts. The next step

is to define two different lamda expressions. The first expression exp1 defines the creation of an ARP

reply packet used to spoof a specific network client. The second expression exp2 specifies an ARP reply

packet to spoof the gateway by impersonating one particular device. Both variables are functions used

during the list comprehension inside the loop in line 17. This list comprehension uses the expressions to

generate two packets for each device belonging to the current network stored inside the Redis database.

The devices are retrieved via the get_devices_values method of the ApateRedis instance. In

contrast to the according method of the HolisticDaemonApp class, these packets need to be created

anew every time the packets are sent, because devices may have been added or removed.

The method exit is called upon termination of the daemon, which in turn executes

_return_to_normal:

1 def _return_to_normal(self):

2 # spoof clients with GARP boradcast request

3 sendp(

4 Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=self.

gateway, hwdst=ETHER_BROADCAST,

5 hwsrc=self.gate_mac))

6

7 # generate ARP reply packet for every existing client and spoof the gateway

8 packets = [Ether(dst=self.gate_mac) / ARP(op=2, psrc=dev[0], pdst=self.

gateway, hwsrc=dev[1]) for dev in self.redis.get_devices_values(

filter_values=True)]

9 sendp(packets)

The first part of this method restores the ARP table entries of the network clients the same way as the

Tobias Dam 38

4. Evaluation and Results

HolisticDaemonApp. The second part creates ARP replies containing the correct hardware address of

the host as hardware source for every existing device and transmits the packets to the gateway.

As mentioned in section 3.3.2, the selective spoofing mode does not suffer from the spoofing delay

originating from the generation of packets for every possible host on the network. Inside the

_return_to_normal method as well as in run, existing devices are retrieved from the database and

used for packet creation, which results in a more performant procedure.

The second part of the selective spoofing mode is the listener, which is implemented by the

SelectiveSniffThread class. Similar to the HolisticSniffThread, it inherits the abstract class

_SniffThread. The selective mode uses the host discovery methods explained in section 3.4, therefore

the class-level variables _SNIFF_FILTER and _LFILTER are overridden in order to be able to process

incoming ARP and IGMP packets.

1 _SNIFF_FILTER = "(arp or igmp) and inbound"

2 """str: tcpdump filter used for scapy’s sniff function."""

3 _LFILTER = staticmethod(lambda x: any([x.haslayer(layer) for layer in (ARP, IGMP)]))

4 """function: lambda filter used for scapy’s sniff function."""

Addtionally to the parameters of the __init__ method of the superclass, the constructor also takes the

argument redis, which is an instance of ApateRedis. The overridden method _packet_handler

examines whether the packet is an ARP packet or an IGMP packet and either calls _arp_handler or

_igmp_handler.

Most of the _arp_handler method works similar to the _packet_handler method of the

HolisticSniffThread class. In case the received packet is an ARP request and it is intended for the

upribox, the transmitter is spoofed after the according packet was created. Additionally, a device entry

inside the Redis database is stored for the sending device, using following code:

1 self.redis.add_device(pkt[ARP].psrc, pkt[ARP].hwsrc)

Thereby, the ApateRedis instance self.redis is used to create a new device entry via the method

add_device(ip, mac). The used methods to interact with the Redis database are mentioned in sec-

tion 4.5. The same method is also called in case the received packet is a broadcast ARP request and

transmitted from or destined to the gateway in order to create an entry for the transmitter and another

entry for the receiver. This handler also processes incoming ARP replies by adding a device entry for the

sender.

Incoming IGMP report messages are processed by _igmp_handler, which generates a device entry and

spoofs the transmitter of the IGMP report as well as the gateway.

1 def _igmp_handler(self, pkt):

Tobias Dam 39

4. Evaluation and Results

2 self.redis.add_device(pkt[IP].src, pkt[Ether].src)

3 sendp([Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=self.gateway, pdst=pkt[IP

].src, hwdst=pkt[Ether].src),

4 Ether(dst=self.gate_mac) / ARP(op=2, psrc=pkt[IP].src, pdst=self.

gateway, hwdst=self.gate_mac)])

4.4.5. Host Discovery Methods

As mentioned in section 4.4.4, the selective spoofing mode utilises the classes IGMPDiscoveryThread

and ARPDiscoveryThread for host discovery purposes. Both classes implement a __init__ as well

as a run method and inherit the superclass threading.Thread.

1 class ARPDiscoveryThread(threading.Thread):

2 """This thread is used to discover clients on the network by sending ARP

requests."""

3

4 def __init__(self, gateway, network):

5 threading.Thread.__init__(self)

6 self.gateway = gateway

7 self.network = network

8

9 def run(self):

10 sendp(Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=self.

network))

The __init__ method of the ARPDiscoveryThread has the parameters gateway and network being

the IP address of the gateway and the network’s IP address. After the initialisation is finished, the thread

can be started. The run method is executed and sends ARP request packets for every possible host.

Corresponding answers are process via the SelectiveSniffThread.

The second host discovery thread is the IGMPDiscoveryThread, which possesses following class-level

variables:

1 _IGMP_MULTICAST = "224.0.0.1"

2 """str: Multicast address used to send IGMP general queries."""

3 _SLEEP = 60

4 """int: Time to wait before sending packets anew."""

5 _IGMP_GENERAL_QUERY = 0x11

6 """int: Value of type Field for IGMP general queries."""

7 _TTL = 1

8 """int: Value for TTL for IP packet."""

Tobias Dam 40

4. Evaluation and Results

The value of _TTL is used during the creation of the IP packet and _IGMP_GENERAL_QUERY specifies the

value of the type field. This thread uses IGMP general queries for discovering hosts and therefore uses

a type value of 0x11 and the multicast address 224.0.0.1 as defined in _IGMP_MULTICAST. _SLEEP

defines the delay between two executions.

The __init__ method of the class works similar to the same-named method of ARPDiscoveryThread

, but takes the IP address and the hardware address of the upribox as additional parameters.

The following source code of the run method, creates an Ethernet layer, an IP layer and the IGMP layer

separately and afterwards calls the method igmpize to adept some headers of the Ethernet and IP layer.

After this packet has been generated once, it is sent every _SLEEP seconds.

1 def run(self):

2 # create IGMP general query packet

3 ether_part = Ether(src=self.mac)

4 ip_part = IP(ttl=self._TTL, src=self.ip, dst=self._IGMP_MULTICAST)

5 igmp_part = IGMP(type=self._IGMP_GENERAL_QUERY)

6

7 # Called to explicitely fixup associated IP and Ethernet headers

8 igmp_part.igmpize(ether=ether_part, ip=ip_part)

9

10 while True:

11 sendp(ether_part / ip_part / igmp_part)

12 time.sleep(self._SLEEP)

Incoming answers are again processed by the SelectiveSniffThread.

4.5. Apate Redis

The class ApateRedis located inside files/apate/lib/apate_redis.pymanages the Redis database

and device entries stored inside the database.

Several constants are used to define the device entries, which database should be used and the expiration

time of entries:

1 __PREFIX = "apate"

2 """str: Prefix which is used for every key in the redis db."""

3 __DELIMITER = ":"

4 """str: Delimiter used for separating parts of keys in the redis db."""

5 __IP = "ip"

6 """str: Indicator for the IP part of the redis key."""

7 __NETWORK = "net"

8 """str: Indicator for the network address part of the redis key."""

Tobias Dam 41

4. Evaluation and Results

9 __DB = 5

10 """int: Redis db which should be used."""

11 __TTL = 259200

12 """int: Time after which device entries in the redis db expire. (default=3 days)"""

Per default Apate uses database 5 of the Redis server as defined by __DB, so as to not interfere with

other applications using the default database. In order to avoid entries remaining forever in the database,

entries are added with an Time to Life (TTL) specified in __TTL. Therefore, entries for devices, that have

been removed from the network, are automatically deleted by the Redis server after the TTL expires.

The ApateRedis class knows two different types of entries:

• the network entry,

• the device entry.

The network entry uses a Redis set as datastructure, that stores the IP addresses of clients for a specific

network. The key of a network entry consists of the Apate prefix __PREFIX, the network part indi-

cator __NETWORK and the network IP address. Each part is delimited by the value of __DELIMITER.

For example, the key of the network entry for the network 192.168.20.0/24 would be apate:net

:192.168.0.0. The datatype set was chosen, because it does not allow repeated members, which is

advantageous as at most one entry per IP address should exist.

The device entry’s value consists of a simple string, containing the hardware address of the device. The

key has the same parts as the network entry as well as the IP part indicator __IP, the IP address of the

device and the enabled state of the device. These parts are also delimited by the value of __DELIMITER.

In case a device should be enabled for spoofing, the enabled state is set to 1, otherwise it is set to 0. The

key of the device entry for a host enabled for spoofing with the network configuration 192.168.0.5/24

would be apate:net:192.168.0.0:ip:192.168.0.5:1.

Because of this specific key format it is easily possible to retrieve all devices of a specific network with an

enabled spoofing state. The IP addresses stored inside the network entry just have to be prepended with

the key of the network entry and the ip indicator. The resulting key is appended with the enabled state

1. The Redis database returns the hardware address if the device entry exists, meaning that the device is

enabled. Otherwise the string "None" is returned by the Redis server, which can easily be filtered.

The method __init__ initialises several variables, when a new ApateRedis instance is created.

1 def __init__(self, network, logger):

2 self.redis = redis.StrictRedis(host="localhost", port=6379, db=self.__DB)

3 self.network = network

4 self.logger = logger

Tobias Dam 42

4. Evaluation and Results

This method requires the network address and the instance of the logging facility as parameters and

creates a new StrictRedis object, which opens a connection to the local Redis server using the default

port and the database specified in __DB. This object is used to communicate with the Redis server, for

instance adding and removing keys.

The class ApateRedis has following public methods to manage and retrieve entries:

1 def add_device(self, ip, mac, network=None, enabled=True, force=False):

2 if not self._check_device_disabled(ip, network or self.network) or force:

3 self._add_device_to_network(ip, network or self.network)

4 return self._add_entry(self._get_device_name(ip, network or self.network,

enabled=enabled), mac)

5

6 def remove_device(self, ip, network=None, enabled=True):

7 self._del_device_from_network(ip, network or self.network)

8 return self._del_device(self._get_device_name(ip, network or self.network,

enabled=enabled))

9

10 def get_device_mac(self, ip, network=None, enabled=True):

11 return self.redis.get(self._get_device_name(ip, network or self.network, enabled

=enabled))

12

13 def get_devices(self, network=None):

14 return self.redis.smembers(self._get_network_name(network or self.network))

15

16 def get_devices_values(self, filter_values=False, network=None, enabled=True):

17 # list may contain null values

18 devs = self.get_devices(network=network or self.network)

19 if not devs:

20 return []

21 else:

22 vals = self.redis.mget([self._get_device_name(dev, network or self.network,

enabled=enabled) for dev in devs])

23 res = zip(devs, vals)

24 # filter "None" entries if filter_values is True

25 return res if not filter_values else [x for x in res if x[1] and x[1] != str

(None)] # filter(None, res)

26

27 def get_pubsub(self, ignore_subscribe_messages=True):

28 return self.redis.pubsub(ignore_subscribe_messages=ignore_subscribe_messages)

29

30 def disable_device(self, ip, network=None):

Tobias Dam 43

4. Evaluation and Results

31 self._toggle_device(ip, network or self.network, enabled=False)

32

33 def enable_device(self, ip, network=None):

34 self._toggle_device(ip, network or self.network, enabled=True)

Most of the methods shown above require one or more of the following parameters:

• ip, the IP address of the device, that should be managed,

• mac, the hardware address of the device, that should be managed,

• network, the network address that should be used. If this parameter is not used, the value of

self.network is used instead.

• enabled, determines if the entry should be enabled.

The method add_device can be used to create a new device entry. The IP address of the device is

automatically added to the corresponding network entry. An enabled entry is only created per default,

if there is no disabled entry for the same device inside the database. This behaviour can be disabled by

passing force=True as parameter.

Should a specific device be removed, the method remove_device can be used. The according device

entry is created from the parameters and the entry is deleted. The IP address of the device is also removed

from the network entry.

All public methods do not require the caller to specify the device of network entry, but use the private

methods _get_device_name or _get_network_name to create those by using one or more of the

parameters ip, network and enabled.

The method get_device_mac can be used to retrieve the hardware address of a specific device, whereas

get_devices returns a list of IP address belonging to a specific network.

The SelectiveDaemonApp uses the get_devices_values method to retrieve a list containing a

tuple for each device of a network. A tuple contains the IP address and the hardware address of a single

device. In case a device does not exist, for example the caller asked for an enabled entry, although only

a disabled one is stored, the Redis server returns the string "None" for this device. In avoidance of those

values, the parameter filter_values=True can be provided to filter such values.

get_pubsub returns a PubSub object, which is used to subscribe to a specific channel and listen for

messages.

In order to enable or disable specific device entries, the methods disable_device and enable_device

were created.

Tobias Dam 44

4. Evaluation and Results

Several private methods, which are beginning with an underscore, provide internal functionality and

further abstraction. Those methods are available in appendix A.10.2.

As stated above, added device entries are removed by the Redis server after their TTL expires. The

according IP address of the device in the network entry, is not automatically cleared by the system. The

PubSubThread, located inside the module lib/misc_thread.py in appendix A.10.5, is used to listen

for messages of the Redis keyspace event “expired” and deletes removed devices from the network entry.

The following class-level variable is used to subscribe to the desired messages:

1 __SUBSCRIBE_TO = "__keyevent@{}__:expired"

2 """Used to subscribe to the keyspace event expired."""

The method run subscribes to the desired keyspace events of the database ApateRedis.__DB in line

2 and listens for messages afterwards. The listen method of the redis PubSub object, which is

retrieved inside of the constructor with get_pubsub of the ApateRedis instance, blocks the execution

of the thread until a new message is received. This messages contain the key of the deleted entry, that is

used to remove the device from the network entry.

1 def run(self):

2 self.pubsub.subscribe(self.__SUBSCRIBE_TO.format(self.redis.__DB))

3 for message in self.pubsub.listen():

4 self.logger.debug("Removed expired device {} from network {}".format(util.

get_device_ip(message[’data’]), util.get_device_net(message[’data’])))

5 # removes the ip of the expired device (the removed device entry) from the

network set

6 self.redis._del_device_from_network(util.get_device_ip(message[’data’]),

util.get_device_net(message[’data’]))

4.6. Util

The module lib/util.py provides several methods used to facilitate often performed tasks, as listed

below:

• hex2str_mac(hex_val) converts a hexadecimal MAC address inside a string into a human

readable representation. For instance, if the broadcast address is passed in the format "\xff\xff

\xff\xff\xff\xff", the return value is "ff:ff:ff:ff:ff:ff".

• get_mac(ip, interface) uses Scapy’s srp method to retrieve the hardware address of the IP

address ip using the network interface interface.

Tobias Dam 45

4. Evaluation and Results

• get_device_enabled(redis_device) returns the enabled part of a device entry.

• get_device_ip(redis_device) returns the IP address part of a device entry.

• get_device_net(redis_device) returns the network address part of a device entry.

4.7. Changes to the Django Web Interface

The upribox web interface provides the possibility to change several configuration options of the upribox

system in an intuitive way. This interface is extended by an option to enable or disable Apate inside the

/more page. All files of the Django interface, that have been changed, are available in the appendix

A.11.

First, a new URL used to toggle the status of Apate was added to the file upribox_interface/urls

.py:

1 url(r’^more/apate/toggle$’, "more.views.apate_toggle", name="upri_apate_toggle"),

This code defines, that the view apate_toggle is called if the site more/apate/toggle is accessed.

The new Django view apate_toggle is added to the file upribox_interface/more/views.py:

1 @login_required

2 def apate_toggle(request):

3 if request.method != ’POST’:

4 raise Http404()

5

6 state = request.POST[’enabled’]

7 jobs.queue_job(sshjobs.toggle_apate, (state,))

8

9 return render_to_response("modal.html", {"message": True, "refresh_url": reverse

(’upri_more’)})

This function only allows the HTTP POST request method and uses the value of the parameter enabled

in order to enable or disable the Apate daemon. The check of the value and the actions needed

to change the state of Apate are performed by the toggle_apate(state) function inside the file

upribox_interface/more/jobs.py. The view responds to the browser with a modal dialog, which

is used to display the current status of the toggle process.

The function toggle_apate examines if the value of the parameter is ’yes’ or ’no’ as well as exe-

cutes the script /usr/local/bin/upri-config.py, which applies changes via Ansible. In order to

enable or disable Apate, the options enable_apate and restart_apate of the script are needed.

Tobias Dam 46

4. Evaluation and Results

The following functions are the most important part of the upri-config.py script in regard to changing

the state of the Apate daemon:

1 def action_set_apate(arg):

2 if arg not in [’yes’, ’no’]:

3 print ’error: only "yes" and "no" are allowed’

4 return 10

5 print ’apate enabled: %s’ % arg

6 en = { "general": { "enabled": arg } }

7 write_role(’apate’, en)

8

9 def action_restart_apate(arg):

10 print ’restarting apate...’

11 return call_ansible(’toggle_apate’)

The first function action_set_apate is used to modify a local facts file for Apate, which deter-

mines the value of the variable enabled used during the Ansible deployment. The second function

action_restart_apate executes the Ansible deployment with the tag “toggle_apate” and therefore

causes the Apate daemon to be enabled or disabled on startup.

The template file upribox_interface/more/templates/more.htmlwas extended by several lines,

which displays the Apate section inside the web interface, provides a description as well as adds the

switch to toggle the state of Apate. The source code can be seen in appendix A.11.4.

4.8. Test Environment

The implementation of the approach was constantly tested during the development. For this purpose,

a separate network with access to the Internet was created. The Apate daemon was tested inside this

network with several devices and different operating systems:

• a Linksys Wireless-G Broadband Router WRT54GL,

• an upribox using a Raspberry Pi 2 Model B v1.1 running Raspbian Jessie,

• a Raspberry Pi 1 Model B running Raspbian Wheezy,

• a Windows 10 device using a “Killer E2200 Gigabit Ethernet Controller" NIC4 and an “Intel Dual

Band Wireless-AC 7260" WNIC5,

4Network Interface Controller
5Wireless Network Interface Controller

Tobias Dam 47

4. Evaluation and Results

• an Ubuntu 14.10 device using a “RTL-8100/8101L/8139 PCI Fast Ethernet Adapter" NIC and also

an “Intel Pro/Wireless 3945ABG" WNIC ,

• a Sony XPeria Z3 Compact running Android 6.0.1.

The upribox was used as the spoofing device by executing the Apate ARP spoofing daemon, which was

deployed via Ansible. The other devices were used to test if the spoofing of the network was working

and to simulate an average user’s Internet behaviour.

Due to the testing during the development of the holistic spoofing mode, several drawbacks of this

mode of operation, as described in section 3.3.1, were discovered. This resulted in the development of

the selective spoofing mode, which resolves the “unspoofing” problem, occuring because of the large

amount of needed packets in order to spoof every possible host, by utilising a Redis database.

4.9. Results

During the tests of the Apate ARP spoofing daemon, no disadvantages regarding Internet and network ac-

tivities of successfully spoofed devices compared to devices connected to the upribox wireless networks

were detected.

In the course of tests using Apate’s holistic spoofing mode, some complications occurred. Rarely, the

Windows 10 device using the “Killer E2200 Gigabit Ethernet Controller” NIC entered an inexplicable

behaviour. While being successfully spoofed in the beginning, the network interface would start sending

broadcast ARP requests asking for the gateway every few seconds, despite of receiving an answer of the

upribox and the gateway every time. After processing an answer of the real gateway, the ARP tables

entry was updated and the device was “unspoofed”. This result in a very instable networking state of

the device, because of frequently dropping connections after being spoofed and “unspoofed” repeatedly.

The behaviour would not stop after disabling the Apate daemon and restoring the normal network state

and even continues after deactivating and reactivating the network interface. A reboot of the device is

required in order to return the network interface into a normal way of funtioning.

This problem might be caused by a software bug of the network driver. Nevertheless, this occurrence

shows that unpredictable issues could result in being unable to spoof a device or the whole network and

could even interrupt the operations of the netwok. During the selective spoofing mode, which does not

use GARP requests but unicast ARP replies to spoof devices, this behaviour did not occur.

While using a network address of 10.0.0.0 and a subnetmask of 255.0.0.0, the holistic mode did not

work as intended. The generation of packets for every possible host of the network takes a lot of time,

due to the high number of possible clients. There is also a rather long delay every time the packets are

Tobias Dam 48

4. Evaluation and Results

sent, which in fact results in not being able to spoof any device on the network and an extreme workload

of the upribox.

Due to this test the selective spoofing mode, which utilises a database to store only information of existing

hosts, became the preferred default mode of operation.

Results of testing the IGMP general query host discovery method show, that this method is only suited

to be used supplementary. While the Windows device would reliably answer incoming queries, the

Raspberry Pi 1 would not answer at all, due to not being a member of any multicast group. The Ubuntu

14.10 client did not respond to IGMP general queries, but only to group-specific queries. The Android

device did not answer any queries, though it transmits IGMP group membership reports whenever the

display of the device is enabled.

Tobias Dam 49

5. Discussion

This chapter illustrates the answer of the pivotal question, the criticism of the thesis and the implemented

approach as well as future work.

5.1. Answering the Research Questions

The research question is: “Can ARP spoofing be a valid mechanism to defend privacy?”

As many other measures for increasing the Internet privacy or security of users, ARP spoofing can

contribute to an enhanced privacy solution, but will not suffice if used alone. Just like a web filtering

proxy is not able to increase privacy by filtering network traffic if no traffic is directed to it, ARP spoofing

alone is not benefical by only redirecting traffic. Keeping the dependence of privacy enhancing features

on other services in mind, ARP spoofing becomes a valid mechanism to defend privacy.

5.1.1. How is it possible to increase Internet privacy with the help of ARP

spoofing?

Applying ARP spoofing inside a network will not contribute to an increased privacy, unless it is used

in conjunction with other services, for example a web filtering proxy. By enhancing the upribox, an

open-source project with the aim to provide an easy-to-use solution to raise Internet privacy with an

ARP spoofing functionality, both main contributions are assembled. On the one hand the ARP spoofing

solution redirects the traffic of network devices to the upribox, on the other hand the upribox is able to

refine the received data.

5.1.2. How can a found approach be implemented?

The approach can be implemented as an additional Ansible role for the upribox project. Several changes

to the existing roles need to be performed, as mention in section 4.2. The new Ansible role installs

various dependencies as well as the actual ARP spoofing solution. This ARP spoofing daemon is written

in Python and uses Scapy to perform several network tasks. The spoofing part of the daemon can be

implemented using different techniques, for instance utilising GARP requests as done by the holistic

Tobias Dam 50

5. Discussion

spoofing mode. Another technique only spoofs existing devices, which are stored inside a database,

through ARP replies as done by the selective spoofing mode.

5.1.3. Which possibilities except ARP spoofing could be used for increasing the

Internet privacy?

In reference to the increasing importance of IP version 6, the Neighbor Discovery protocol, which is

used to perform address resolution similar to the Address Resolution Protocol for IP version 4, can be

used to redirect network traffic. This possibility is further explained in section 5.3.2. Other techniques

to redirect traffic from hosts to another target can also provide a sufficient solution, for instance ICMP

redirects.

5.2. Criticism of the Thesis and the Implemented Approach

The environment used for testing the developed approach was artificially created for this purpose. It

does not allow a comprehensive examination of every possibility regarding network devices, different

network interface controllers, routers and operating systems. This could cause issues or other difficulties,

which might occur in specific situations, to remain undetected. Another drawback due to the limited test

environment is the fact, that the solution was not tested inside a “real world” network. The developer of

the approach constructed the network and chose the devices and operating systems in reference to their

understanding of an average network and user’s Internet behaviour. This perception might differ from

several “real world” situations and result in unconsidered aspects.

The IGMP host discovery method, which was chosen as a supplementary technique for discovering exist-

ing devices, was implemented using IGMP general queries. As mentioned in section 4.9, several systems

do not respond to IGMP general queries. The current implementation of this host discovery method does

not consider this fact and does not take appropriate measures. The method should be extended by sur-

veying appropriate multicast group addresses and adding functionality to query memberships of these

specific groups. Other actions might be taken to further increase the benefit of this method.

Another aspect, which was not taken into account, is the existence of defense measures against ARP

spoofing, as explained in section 2.3. In case the ARP messages are authenticated as proposed by S-

ARP or TARP, the clients would not accept the forged packets of the upribox and therefore would not

be spoofed. In networks using MR-ARP, clients, that receive a spoofed packet, would always approach

the original gateway, also resulting in not being spoofed. Thus the developed approach is not applicable

inside networks utilising such defence measures against ARP spoofing. In order to be able to integrate

Tobias Dam 51

5. Discussion

this solution into protected networks further research and an adaption of the solution is needed.

5.3. Future Work

This chapter presents future work, which is needed in order to further improve the solution, besides the

adaption of the test environment and the IGMP host discovery implementation as well as the needed

research regarding ARP spoofing defense measures, as already mentioned in section 5.2.

5.3.1. Enhancing the Web Interface

Despite slightly contradicting the zero configuration ideology, more advanced users might be in need of

an option to enable or disable the spoofing for specific devices. While the developed solution provides

developers with an option to toggle the spoofing state of a device, the web interface lacks the functionality

to exclude particular devices. The web interface only allows the complete deactivation of the Apate

ARP spoofing daemon. Therefore the web interface should be extended by this feature according to the

principles of usability and following the currently applied design.

5.3.2. Migration to IPv6

Due to the increasing importance of IPv6, the solution should be adapted to use methods appropriate for

spoofing devices using IPv6. At present, the upribox does not provide configurations for the utilisation

of IPv6 and thus does not support this protocol. By the time the upribox adds support for this protocol,

the Apate ARP spoofing daemon should also be able to spoof IPv6 devices. As described in section 2.9,

the address resolution part of the Neighbor Discovery Protocol functions in a very similar way to the

Address Resolution Protocol. Therefore the spoofing could be performed by forging an unicast neighbor

advertisement packet with following values for the most important fields:

• the hardware address of the network device as Ethernet destination,

• the hardware address of the upribox as Ethernet source,

• the value 0x86dd representing IPv6 as Ethernet type,

• the IPv6 address of the network device as IPv6 destination,

• the IPv6 address of the upribox as IPv6 source,

• the value 1 to set the override flag,

• the IPV6 address of the upribox as ICMP target address,

Tobias Dam 52

5. Discussion

• the hardware address of the upribox as ICMP target link-layer address.

Due to the present Override Flag, the receiving network device updates its existing neighbor cache entry

of the gateway using the provided ICMP target link-layer address. The modified entry is set to the state

STALE, because the client has to verify the reachability of the host. This behaviour could be avoided by

additionally setting the solicited flag, which results in a state of REACHABLE for the updated entry.

As this method only works via unicast packets, further host discovery methods applicable for networks

using IPv6 would be needed.

Tobias Dam 53

6. Conclusion

Concluding it can be said that the Apate ARP spoofing daemon, which is installed by an extension for

the project upribox, can be used to successfully spoof all clients on the network and to redirect network

traffic to the upribox, which in turn refines the received data in order to increase the user’s Internet

privacy.

The daemon provides two different modes of operation, which both spoof network hosts but have a

distinct internal way of working. The holistic spoofing mode, described in the sections 3.3.1 and 4.4.3,

requires less resources, but might be unsuited for bigger networks because of spoofing issues caused

by the delay originating from the generation of packets for every possible host on the network. While

using more resources, the selective spoofing mode, explained in the sections 3.3.2 and 4.4.4, resolves

this drawback by only creating packets for existing hosts utilising a database and different host discovery

techniques.

The author deems that despite the test environment being a limited and artificially created network, as

mentioned in the sections 4.8 and 5.2, the Apate daemon is suited for the networks of a majority of users,

because of the adaptability provided by the different modes of operation.

Especially the selective spoofing mode, which is chosen per default, resulted in the stable spoofing of all

network devices. This mode is also preferable, because it only uses common ARP requests and replies,

whereas the holistic spoofing mode makes use of GARP requests. As explained in section 4.9, during the

tests some devices rarely showed strange behaviour after dealing with GARP requests. Such problems

are less likely to happen with the selective spoofing mode, because common ARP packets are used a lot

more frequent than GARP packets and therefore bugs in network drivers affecting the workflow of ARP

are more likely to be detected and fixed.

Another positive aspect of the Apate ARP spoofing daemon is the contribution to the usability in ac-

cordance with the zero configuration ideology of the upribox project by automatically redirecting the

network traffic to the upribox without requiring the user to change the configuration of the devices.

Tobias Dam 54

A. Source Code

A.1. tasks/main.yml

1 ---

2 - include: ../../common/tasks/other_env.yml

3 - include: apate_state.yml tags=toggle_apate

4

5 - name: create working directory for apate daemon

6 file: path=/opt/apate state=directory recurse=yes mode=0771 owner=root group=root

7

8 - name: copy the apate files

9 copy: src=apate/ dest=/opt/apate owner=root group=root mode=0774

10 notify: restart apate

11

12 - name: copy apate init script

13 template: src=init/apate dest=/etc/init.d/apate owner=root group=root mode=0755

14 notify: restart apate

15

16 - name: copy apate service file

17 template: src=init/apate.service dest=/etc/systemd/system/apate.service owner=root

group=root mode=0755

18 notify: restart apate

19 register: service_file

20

21 - name: systemctl daemon-reload

22 shell: /bin/systemctl daemon-reload

23 when: service_file.changed

24

25 - name: create apate config dir

26 file: path=/etc/apate state=directory recurse=yes mode=0771 owner=root group=root

27

28 - name: copy apate config file

29 template: src=config.json dest=/etc/apate/config.json owner=root group=root mode

=0755

Tobias Dam 55

A. Source Code

30 notify: restart apate

31

32 - name: install virtualenv, tcpdump

33 apt: name={{ item }} state="{{ apt_target_state }}" force=yes update_cache=yes

cache_valid_time="{{ apt_cache_time }}"

34 with_items:

35 - python-virtualenv

36 - tcpdump

37 - redis-server

38

39 - name: install requirements to virtualenv

40 pip: requirements=/opt/apate/requirements.txt virtualenv=/opt/apate/venv

41 notify: restart apate

42

43 - name: remove log files from other environment

44 file: path={{other_env.default_settings.log.general.path}}/{{other_env.

default_settings.log.apate.subdir}} state=absent

45

46 - name: modify logrotate.d entry

47 template: src=logrotate.j2 dest=/etc/logrotate.d/apate mode=0644

48

49 - name: configure apate service

50 service: name=apate state=’{{ "started" if apate_enabled|bool else "stopped" }}’

enabled=’{{ apate_enabled|bool }}’

51 tags:

52 - toggle_apate

53

54 - name: change keyspace event notification of redis-sever

55 lineinfile:

56 dest: /etc/redis/redis.conf

57 regexp: ’^notify-keyspace-events’

58 line: ’notify-keyspace-events "Ex"’

59 notify: restart redis

60

61 - name: enable redis server

62 service: name=redis-server enabled=yes

A.2. tasks/apate_state

1 ---

Tobias Dam 56

A. Source Code

2 #jinja2 has to evaluate this string seperately, because it is not possible to just

include this string in a "when" statement

3 - set_fact:

4 apate_enabled: "{{ default_settings.apate.general.enabled if not (ansible_local

is defined and ansible_local.apate is defined and ansible_local.apate.

general is defined) else ansible_local.apate.general.enabled | default(

default_settings.apate.general.enabled) }}"

A.3. handlers/main.yml

1 ---

2 - include: ../tasks/apate_state.yml tags=toggle_apate

3

4 - name: restart apate

5 service: name=apate state={{"restarted" if apate_enabled|bool else "stopped"}}

6

7 - name: restart redis

8 service: name=redis-server state=restarted

A.4. templates/apate

1 #! /bin/bash

2

3 ### BEGIN INIT INFO

4 # Provides: apate

5 # Required-Start: $local_fs $remote_fs $network $syslog $all

6 # Should-Start:

7 # Required-Stop: $local_fs $remote_fs $network $syslog

8 # Should-Stop:

9 # Default-Start: 2 3 4 5

10 # Default-Stop: 0 1 6

11 # Short-Description: ARP Spoofing Daemon

12 # Description: Runs up the ARP Spoofing Daemon process

13 ### END INIT INFO

14

15 PATH=/sbin:/bin:/usr/sbin:/usr/bin:/usr/local/sbin:/usr/local/bin

16

17 if [[$EUID -ne 0]]; then

18 echo "This daemon must be run as root"

Tobias Dam 57

A. Source Code

19 exit 1

20 fi

21

22 # Activate the python virtual environment

23 . /opt/apate/venv/bin/activate

24

25 PID={{ default_settings.apate.pid.dir }}

26 LOGDIR={{ default_settings.log.general.path }}/{{ default_settings.log.apate.subdir

}}

27

28 if [! -d $PID]; then

29 mkdir $PID || return 2

30 fi

31

32 if [! -d $LOGDIR]; then

33 mkdir $LOGDIR || return 2

34 fi

35

36 case "$1" in

37 start)

38 echo "Starting server"

39 # Start the daemon

40 python /opt/apate/apate.py start

41 ;;

42 stop)

43 echo "Stopping server"

44 # Stop the daemon

45 python /opt/apate/apate.py stop

46 ;;

47 restart)

48 echo "Restarting server"

49 python /opt/apate/apate.py restart

50 ;;

51 *)

52 # Refuse to do other stuff

53 echo "Usage: /etc/init.d/apate {start|stop|restart}"

54 exit 1

55 ;;

56 esac

57

58 exit 0

Tobias Dam 58

A. Source Code

A.5. templates/apate.service

1 [Unit]

2 Description=Apate ARP Spoofing Daemon

3 Requires=networking.service network-online.target redis-server.service

4 Wants=network-online.target

5 After=networking.service redis-server.service network-online.target

6

7 [Service]

8 Type=forking

9 ExecStart=/etc/init.d/apate start

10 ExecStop=/etc/init.d/apate stop

11 PIDFile={{ default_settings.apate.pid.dir }}/{{ default_settings.apate.pid.file }}

12 Restart=on-failure

13

14 [Install]

15 WantedBy=multi-user.target

A.6. templates/logrotate.j2

1 {{default_settings.log.general.path}}/{{default_settings.log.apate.subdir}}/*.log {

2 su root root

3 compress

4 copytruncate

5 weekly

6 rotate 3

7 missingok

8 notifempty

9 maxsize 10M

10 }

A.7. templates/config.json

1 {

2 "pidfile": "{{ default_settings.apate.pid.dir }}/{{ default_settings.apate.pid.

file }}",

3 "logfile": "{{ default_settings.log.general.path }}/{{ default_settings.log.

apate.subdir }}/{{ default_settings.log.apate.logfiles.logname }}",

4 "interface": "eth0",

Tobias Dam 59

A. Source Code

5 "stdout": "{{ default_settings.log.general.path }}/{{ default_settings.log.apate

.subdir }}/{{ default_settings.log.apate.logfiles.stdout }}",

6 "stderr": "{{ default_settings.log.general.path }}/{{ default_settings.log.apate

.subdir }}/{{ default_settings.log.apate.logfiles.stderr }}",

7 "mode": "{{ default_settings.apate.mode }}"

8 }

A.8. environments/development/group_vars/all.yml

1 ---

2 env: development

3

4 remote_user: upri

5 sudo_group: upriusers

6 hostname: upribox

7 remote_user_login_shell: /bin/bash

8

9 apt_cache_time: 3600

10 apt_target_state: installed

11

12 ansible_pip_version: 1.9.6

13 ansible_uwsgi_version: 1.9.2

14

15 django_settings_file: settings_dev

16

17 default_settings:

18 apate:

19 general:

20 enabled: ’yes’

21 # modes: selective, holistic

22 mode: ’selective’

23 pid:

24 dir: ’/var/run/apate’

25 file: ’apate.pid’

26 django:

27 # this path is for "upri-config.py parse_logs"

28 # if you want to change the path, you will also have to

29 # edit django’s settings file

30 db: ’/usr/share/nginx/www-upri-interface/db.sqlite3’

31 tor:

Tobias Dam 60

A. Source Code

32 general:

33 enabled: ’no’

34 ssh:

35 general:

36 enabled: ’yes’

37 vpn:

38 general:

39 enabled: ’yes’

40 log:

41 general:

42 path: ’/var/log/log’

43 privoxy:

44 subdir: ’privoxy’

45 logfiles:

46 logname: ’privoxy.log’

47 apate:

48 subdir: ’apate’

49 logfiles:

50 logname: apate.log

51 stdout: stdout.log

52 stderr: stderr.log

53 tor:

54 subdir: ’tor’

55 logfiles:

56 logname: ’log’

57 rqworker:

58 logfiles:

59 stdout: ’rqworker.out.log’

60 stderr: ’rqworker.err.log’

61 supervisor:

62 logfiles:

63 logname: ’supervisord.log’

64 uwsgi:

65 logfiles:

66 logname: ’uwsgi.log’

67 dnsmasq:

68 logfiles:

69 logname: ’dnsmasq.log’

70 dnsmasq_ninja:

71 logfiles:

72 logname: ’dnsmasq_ninja.log’

Tobias Dam 61

A. Source Code

73 nginx:

74 logfiles:

75 error: ’nginx_error.log’

76 access: ’nginx_access.log’

77 interface_error: ’nginx_interface_error.log’

78 interface_access: ’nginx_interface_access.log’

79 blackhole_error: ’nginx_blackhole_error.log’

80 blackhole_access: ’nginx_blackhole_access.log’

81 css_error: ’nginx_css_error.log’

82 css_access: ’nginx_css_access.log’

83 vpn:

84 logfiles:

85 logname: ’openvpn.log’

86 status: ’openvpn-status.log’

87 rsyslog:

88 subdir: ’rsyslog’

89 logfiles:

90 auth: ’auth.log’

91 syslog: ’syslog’

92 cron: ’cron.log’

93 daemon: ’daemon.log’

94 kern: ’kern.log’

95 lpr: ’lpr.log’

96 mail: ’mail.log’

97 user: ’user.log’

98 mail_info: ’mail.info’

99 mail_warn: ’mail.warn’

100 mail_error: ’mail.error’

101 news_crit: ’news.crit’

102 news_err: ’news.err’

103 news_notice: ’news.notice’

104 debug: ’debug’

105 messages: ’messages’

106

107 # variables for pull updates in development mode

108 pull_cron_schedule: ’0 */4 * * *’

109 pull_cron_user: root

110 pull_logfile: /var/log/ansible-pull.log

111 pull_workdir: /var/lib/ansible/local

112 pull_branch: master

113 pull_repo_url: git@github.com:usableprivacy/upribox.git

Tobias Dam 62

A. Source Code

114 pull_git_host: github.com

115 pull_git_sshkey: ’|1|YSIl0HnC//DkFvWLLsAsBxDU10Q=|PC/XJu88KyBvcN7nilLAbany2bE= ssh-

rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+

PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31

/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2

RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/w4yCE6gbODqnTWlg7+

wC604ydGXA8VJiS5ap43JXiUFFAaQ==’

A.9. environments/production/group_vars/all.yml

1 ---

2 env: production

3

4 remote_user: upri

5 sudo_group: upriusers

6 hostname: upribox

7 remote_user_login_shell: /bin/bash

8 apt_cache_time: 86400

9 apt_target_state: installed

10

11 # variables for pull updates in production mode

12 pull_cron_schedule: ’0 */4 * * *’

13 pull_cron_user: root

14 #pull_logfile: /var/log/ansible-pull.log

15 pull_workdir: /var/lib/ansible/local

16 pull_branch: master

17 pull_repo_url: git@github.com:usableprivacy/upribox.git

18 pull_git_host: github.com

19 pull_git_sshkey: ’|1|YSIl0HnC//DkFvWLLsAsBxDU10Q=|PC/XJu88KyBvcN7nilLAbany2bE= ssh-

rsa AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+

PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31

/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2

RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi/w4yCE6gbODqnTWlg7+

wC604ydGXA8VJiS5ap43JXiUFFAaQ==’

20

21 ansible_pip_version: 1.9.6

22 ansible_uwsgi_version: 1.9.2

23

24 django_settings_file: settings_prod

25

Tobias Dam 63

A. Source Code

26 default_settings:

27 apate:

28 general:

29 enabled: ’yes’

30 # modes: selective, holistic

31 mode: ’selective’

32 pid:

33 dir: ’/var/run/apate’

34 file: ’apate.pid’

35 django:

36 # this path is for "upri-config.py parse_logs"

37 # if you want to change the path, you will also have to

38 # edit django’s settings file

39 db: ’/var/upribox-interface/db.sqlite3’

40 tor:

41 general:

42 enabled: ’no’

43 ssh:

44 general:

45 enabled: ’yes’

46 vpn:

47 general:

48 enabled: ’no’

49 log:

50 general:

51 path: ’/var/tmp/log’

52 ansible_pull:

53 logfiles:

54 logname: ’ansible-pull.log’

55 privoxy:

56 subdir: ’privoxy’

57 logfiles:

58 #logrotate applies to *.log

59 logname: ’privoxy.log’

60 apate:

61 subdir: ’apate’

62 logfiles:

63 logname: apate.log

64 stdout: stdout.log

65 stderr: stderr.log

66 tor:

Tobias Dam 64

A. Source Code

67 subdir: ’tor’

68 logfiles:

69 logname: ’log’

70 rqworker:

71 logfiles:

72 stdout: ’rqworker.out.log’

73 stderr: ’rqworker.err.log’

74 supervisor:

75 logfiles:

76 logname: ’supervisord.log’

77 uwsgi:

78 logfiles:

79 logname: ’uwsgi.log’

80 dnsmasq:

81 logfiles:

82 logname: ’dnsmasq.log’

83 dnsmasq_ninja:

84 logfiles:

85 logname: ’dnsmasq_ninja.log’

86 nginx:

87 logfiles:

88 error: ’nginx_error.log’

89 access: ’nginx_access.log’

90 interface_error: ’nginx_interface_error.log’

91 interface_access: ’nginx_interface_access.log’

92 blackhole_error: ’nginx_blackhole_error.log’

93 blackhole_access: ’nginx_blackhole_access.log’

94 css_error: ’nginx_css_error.log’

95 css_access: ’nginx_css_access.log’

96 vpn:

97 logfiles:

98 logname: ’openvpn.log’

99 status: ’openvpn-status.log’

100 rsyslog:

101 subdir: ’rsyslog’

102 logfiles:

103 auth: ’auth.log’

104 syslog: ’syslog’

105 cron: ’cron.log’

106 daemon: ’daemon.log’

107 kern: ’kern.log’

Tobias Dam 65

A. Source Code

108 lpr: ’lpr.log’

109 mail: ’mail.log’

110 user: ’user.log’

111 mail_info: ’mail.info’

112 mail_warn: ’mail.warn’

113 mail_error: ’mail.error’

114 news_crit: ’news.crit’

115 news_err: ’news.err’

116 news_notice: ’news.notice’

117 debug: ’debug’

118 messages: ’messages’

A.10. files/apate

A.10.1. apate.py

1 #!/usr/bin/env python

2 # coding=utf-8

3 """This script is used to control the Apate ARP spoofing daemon."""

4 import logging

5 import sys

6 import signal

7 import os

8 import json

9 import lockfile

10

11 from daemon import runner

12

13 from lib import daemon_app

14

15 CONFIG_FILE = "/etc/apate/config.json"

16 """Path of the config file for the Apate ARP spoofing daemon."""

17 CONFIG_OPTIONS = (’logfile’, ’pidfile’, ’interface’, ’stderr’, ’stdout’, ’mode’)

18 """Options that need to be present in the config file."""

19

20

21 def main():

22 """This script is used to initialise and command the Apate ARP spoofing daemon.

23 It parses the configuration file at CONFIG_FILE and checks for the necessary

Options

Tobias Dam 66

A. Source Code

24 CONFIG_OPTIONS. The daemon needs to be run as root.

25 """

26 # check if run as root

27 if os.geteuid() != 0:

28 print "This daemon needs to be run as root"

29 sys.exit(1)

30

31 # parse configuration file

32 try:

33 with open(CONFIG_FILE) as config:

34 data = json.load(config)

35 except ValueError as ve:

36 print "Could not parse the configuration file"

37 print str(ve)

38 sys.exit(3)

39 except IOError as ioe:

40 print "An error occurred while trying to open the configuration file"

41 print str(ioe)

42 sys.exit(4)

43

44 # check if all necessary options are present in config file

45 if not all(val in data for val in CONFIG_OPTIONS):

46 print "The configuration file does not include all necessary options"

47 sys.exit(2)

48

49 # set up logger for daemon

50 logger = logging.getLogger("DaemonLog")

51 logger.setLevel(logging.INFO)

52 formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(

message)s")

53 handler = logging.FileHandler(data[’logfile’])

54 handler.setFormatter(formatter)

55 logger.addHandler(handler)

56

57 # catch error which could arise during initialisation

58 try:

59 # when configured to use the holistic spoofing mode

60 if data[’mode’] == "holistic":

61 dapp = daemon_app.HolisticDaemonApp(logger, str(data[’interface’]), data

[’pidfile’], data[’stdout’], data[’stderr’])

62 else:

Tobias Dam 67

A. Source Code

63 # selective spoofing mode is default

64 dapp = daemon_app.SelectiveDaemonApp(logger, str(data[’interface’]),

data[’pidfile’], data[’stdout’], data[’stderr’])

65 except Exception as e:

66 logger.error("An error happened during initialsising the daemon process -

terminating process")

67 logger.exception(e)

68 sys.exit(1)

69

70 # intialise daemon

71 daemon_runner = runner.DaemonRunner(dapp)

72 # don’t close logfile

73 daemon_runner.daemon_context.files_preserve = [handler.stream]

74 # start cleanup routine when stopping the daemon

75 daemon_runner.daemon_context.signal_map[signal.SIGTERM] = dapp.exit

76

77 # command daemon

78 try:

79 daemon_runner.do_action()

80 except runner.DaemonRunnerError as dre:

81 print str(dre)

82 except lockfile.LockTimeout as lt:

83 # runner only catches AlreadyLocked, which is not thrown if a timeout was

specified other than None or 0

84 # Following is thrown otherwise and slips through:

85 # LockTimeout: Timeout waiting to acquire lock for /var/run/apate/apate.pid

86 # though this should not be logged as an exception

87

88 # restart fails if timeout is set to 0 or None

89 print str(lt)

90 except Exception as e:

91 # log stacktrace of exceptions that should not occur to logfile

92 logger.error("Exception at do_action()")

93 logger.exception(e)

94

95

96 if __name__ == "__main__":

97 main()

A.10.2. lib/apate_redis.py

Tobias Dam 68

A. Source Code

1 # coding=utf-8

2 """This module provides the ApateRedis class for managing the Apate Redis DB."""

3 import redis

4

5

6 class ApateRedis(object):

7 """This class is used to manage the Apate Redis DB."""

8 __PREFIX = "apate"

9 """str: Prefix which is used for every key in the redis db."""

10 __DELIMITER = ":"

11 """str: Delimiter used for separating parts of keys in the redis db."""

12 __IP = "ip"

13 """str: Indicator for the IP part of the redis key."""

14 __NETWORK = "net"

15 """str: Indicator for the network address part of the redis key."""

16 __DB = 5

17 """int: Redis db which should be used."""

18 __TTL = 259200

19 """int: Time after which device entries in the redis db expire. (default=3 days)

"""

20

21 def __init__(self, network, logger):

22 """Initialises ApateRedis objects. A connection to the local redis server

23 on port 6379 using the database, which is specified by __DB, is established.

24

25 Args:

26 network (str): Network IP Address, which should be used per default.

27 logger (logging.Logger): Used for logging messages.

28

29 """

30 self.redis = redis.StrictRedis(host="localhost", port=6379, db=self.__DB)

31 self.network = network

32 self.logger = logger

33

34 def add_device(self, ip, mac, network=None, enabled=True, force=False):

35 """Adds a device entry to the redis db. Checks if a disabled entry exists,

36 if not adds the device to the network redis set and adds a device entry.

37 Added devices are automatically removed after __TTL expires.

38

39 Args:

Tobias Dam 69

A. Source Code

40 ip (str): IP address of the device.

41 mac (str): MAC (layer 2) address of the device.

42 network (str, optional): Network address of the device. If not set, self

.network is used instead.

43 enabled (bool, optional): Determines if the device should be enabled or

disabled. Defaults to True.

44 force (bool, optional): Switch used to force the insertion of the device

entry (even if a disabled entry already exists).

45 Defaults to False.

46

47 Return:

48 bool: True if successful, false otherwise.

49

50 """

51 if not self._check_device_disabled(ip, network or self.network) or force:

52 self._add_device_to_network(ip, network or self.network)

53 return self._add_entry(self._get_device_name(ip, network or self.network

, enabled=enabled), mac)

54

55 def remove_device(self, ip, network=None, enabled=True):

56 """Removes a device from the network redis set and deletes the device entry.

57

58 Args:

59 ip (str): IP address of the device.

60 network (str, optional): Network address of the device. If not set, self

.network is used instead.

61 enabled (bool, optional): Determines if the device is enabled or

disabled. Defaults to True.

62

63 Results:

64 int: Number of devices deleted.

65

66 """

67 self._del_device_from_network(ip, network or self.network)

68 return self._del_device(self._get_device_name(ip, network or self.network,

enabled=enabled))

69

70 def get_device_mac(self, ip, network=None, enabled=True):

71 """Returns the mac address (value from the redis db) of the device.

72

73 Args:

Tobias Dam 70

A. Source Code

74 ip (str): IP address of the device.

75 network (str, optional): Network address of the device. If not set, self

.network is used instead.

76 enabled (bool, optional): Determines if the device is enabled or

disabled. Defaults to True.

77

78 Returns:

79 The mac address of the specified device as str if successful, None

otherwise.

80

81 """

82 return self.redis.get(self._get_device_name(ip, network or self.network,

enabled=enabled))

83

84 def get_devices(self, network=None):

85 """Returns a list with ip addresses of devices of the specified network.

86

87 Args:

88 network (str, optional): Network address of the device. If not set, self

.network is used instead.

89

90 Returns:

91 List containing device ip addresses if successful, None otherwise.

92

93 """

94 return self.redis.smembers(self._get_network_name(network or self.network))

95

96 def get_devices_values(self, filter_values=False, network=None, enabled=True):

97 """Returns a list with tuples containing ip addresses of devices and the mac

addresses of

98 the devices.

99

100 Args:

101 filter_values (bool, optional): Determines if str(None) values should be

filtered. Defaults to False.

102 network (str, optional): Network address of the device. If not set, self

.network is used instead.

103 enabled (bool, optional): Determines if the device is enabled or

disabled. Defaults to True.

104

105 Returns:

Tobias Dam 71

A. Source Code

106 list: List with tuples containing ip addresses of devices and the mac

addresses of

107 the devices. May contain str(None) values, if there is no device entry

108 for the according ip address and filter_values = False.

109 E.g.:

110 {"192.168.0.1": "11:22:33:44:55:66", "192.168.0.2": "None"}

111

112 """

113 # list may contain null values

114 devs = self.get_devices(network=network or self.network)

115 if not devs:

116 return []

117 else:

118 vals = self.redis.mget([self._get_device_name(dev, network or self.

network, enabled=enabled) for dev in devs])

119 res = zip(devs, vals)

120 # filter "None" entries if filter_values is True

121 return res if not filter_values else [x for x in res if x[1] and x[1] !=

str(None)] # filter(None, res)

122

123 def get_pubsub(self, ignore_subscribe_messages=True):

124 """Used to get a PubSub object.

125

126 Args:

127 ignore_subscribe_messages (bool, optional): Determines if subscriptions

messages should be ignored. Defaults to True.

128

129 Returns:

130 redis.PubSub: PubSub object, which can be used to subscribe to redis

messages.

131

132 """

133 return self.redis.pubsub(ignore_subscribe_messages=ignore_subscribe_messages

)

134

135 def disable_device(self, ip, network=None):

136 """Disables an enabled device in the redis db.

137 An enabled entry "apate:net:192.168.0.0:ip:192.168.0.1:1"

138 afterwards looks like this "apate:net:192.168.0.0:ip:192.168.0.1:0"

139

140 Args:

Tobias Dam 72

A. Source Code

141 ip (str): IP address of the device.

142 network (str, optional): Network address of the device. If not set, self

.network is used instead.

143

144 """

145 self._toggle_device(ip, network or self.network, enabled=False)

146

147 def enable_device(self, ip, network=None):

148 """Enables a disabled device in the redis db.

149 An enabled entry "apate:net:192.168.0.0:ip:192.168.0.1:0"

150 afterwards looks like this "apate:net:192.168.0.0:ip:192.168.0.1:1"

151

152 Args:

153 ip (str): IP address of the device.

154 network (str, optional): Network address of the device. If not set, self

.network is used instead.

155

156 """

157 self._toggle_device(ip, network or self.network, enabled=True)

158

159 def _add_entry(self, key, value):

160 # inserted keys expire after __TTL

161 return self.redis.set(key, value, ApateRedis.__TTL)

162

163 def _del_device(self, device):

164 return self.redis.delete(device)

165

166 @staticmethod

167 def _get_device_name(ip, network, enabled=None):

168 # example for the return value

169 # ip = "192.168.0.1", network = "192.168.0.0", enabled = True --> "apate:

net:192.168.0.0:ip:192.168.0.1:1"

170 if enabled is None:

171 # don’t include the enabled-section (e.g.: "apate:net:192.168.0.0:ip

:192.168.0.1")

172 return ApateRedis.__DELIMITER.join((ApateRedis.__PREFIX, ApateRedis.

__NETWORK, str(network), ApateRedis.__IP, str(ip)))

173 else:

174 return ApateRedis.__DELIMITER.join((ApateRedis.__PREFIX, ApateRedis.

__NETWORK, str(network), ApateRedis.__IP, str(ip), str(int(enabled))

))

Tobias Dam 73

A. Source Code

175

176 @staticmethod

177 def _get_network_name(network):

178 # e.g.: network = "192.168.0.0" --> "apate:net:192.168.0.0"

179 return ApateRedis.__DELIMITER.join((ApateRedis.__PREFIX, ApateRedis.

__NETWORK, str(network)))

180

181 def _add_device_to_network(self, ip, network):

182 """Adds an IP address to a network (redis set)."""

183 return self.redis.sadd(ApateRedis.__DELIMITER.join((ApateRedis.__PREFIX,

ApateRedis.__NETWORK, str(network))), str(ip))

184

185 def _del_device_from_network(self, ip, network):

186 """Removes an IP address from a network (redis set)."""

187 return self.redis.srem(ApateRedis.__DELIMITER.join((ApateRedis.__PREFIX,

ApateRedis.__NETWORK, str(network))), str(ip))

188

189 def _check_device_disabled(self, ip, network):

190 # True if devices is disabled

191 return self.redis.get(self._get_device_name(ip, network, enabled=False)) is

not None

192

193 def _toggle_device(self, ip, network, enabled):

194 # add new device first and delete old device afterwards

195 # this is done to avoid race conditions

196 self.add_device(ip, self.get_device_mac(ip, network, enabled=not enabled),

network, enabled=enabled, force=True)

197 self.remove_device(ip, network, enabled=not enabled)

A.10.3. lib/daemon_app.py

1 # coding=utf-8

2 """This module provides several classes that are used to implement a ARP spoofing

daemon.

3

4 Classes:

5 _DaemonApp: Abstract class, that should be inherited.

6 HolisticDaemonApp: Inherits _DaemonApp and implements the holistist spoofing

mode.

7 SelectiveDaemonApp: Inherits _DaemonApp and implements the selective spoofing

mode.

Tobias Dam 74

A. Source Code

8 DaemonError: Error that indicates the daemon’s failure.

9

10 """

11 import os

12 import logging

13 import time

14 import netifaces as ni

15 from netaddr import IPAddress, IPNetwork, AddrFormatError

16

17 logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

18 # suppresses following message

19 # WARNING: No route found for IPv6 destination :: (no default route?)

20 from scapy.all import conf, sendp, ARP, Ether, ETHER_BROADCAST

21

22 import util

23 from sniff_thread import HolisticSniffThread, SelectiveSniffThread

24 from apate_redis import ApateRedis

25 from misc_thread import ARPDiscoveryThread, IGMPDiscoveryThread, PubSubThread

26

27

28 class _DaemonApp(object):

29 """This is an abstract class, which should be inherited to define the

30 Apate daemon’s behaviour."""

31

32 def __init__(self, logger, interface, pidfile, stdout, stderr):

33 """Initialises several things needed to define the daemons behaviour.

34

35 Args:

36 logger (logging.Logger): Used for logging messages.

37 interface (str): The network interface which should be used. (e.g. eth0)

38 pidfile (str): Path of the pidfile, used by the daemon.

39 stdout (str): Path of stdout, used by the daemon.

40 stderr (str): Path of stderr, used by the daemon.

41

42 Raises:

43 DaemonError: Signalises the failure of the daemon.

44 """

45 # disable scapys verbosity global

46 conf.verb = 0

47

48 self.stdin_path = os.devnull

Tobias Dam 75

A. Source Code

49 self.stdout_path = stdout

50 self.stderr_path = stderr

51 self.pidfile_path = pidfile

52 self.pidfile_timeout = 5

53 # self.pidfile_timeout = 0

54

55 self.logger = logger

56 self.interface = interface

57

58 if_info = None

59 try:

60 if_info = ni.ifaddresses(self.interface)

61 except ValueError as e:

62 self.logger.error("An error concerning the interface {} has occurred: {}

".format(self.interface, str(e)))

63 raise DaemonError()

64

65 # get ip of specified interface

66 self.ip = if_info[2][0][’addr’]

67 # get subnetmask of specified interface

68 self.netmask = if_info[2][0][’netmask’]

69 # get mac address of specified interface

70 self.mac = if_info[17][0][’addr’]

71

72 # get network address

73 try:

74 self.network = IPNetwork("{}/{}".format(self.ip, self.netmask))

75 except AddrFormatError as afe:

76 # this should never happen, because values are retrieved via netifaces

library

77 self.logger.error("A grave error happened during determinig the network:

{}".format(str(afe)))

78 raise DaemonError()

79

80 # get default gateway

81 try:

82 self.gateway = ni.gateways()["default"][ni.AF_INET][0]

83 except KeyError:

84 self.logger.error("No default gateway is configured")

85 raise DaemonError()

86

Tobias Dam 76

A. Source Code

87 # get all ip addresses that are in the specified network

88 # and remove network address, broadcast, own ip, gateway ip

89 self.ip_range = list(self.network)

90 self.ip_range.remove(IPAddress(self.ip))

91 self.ip_range.remove(IPAddress(self.gateway))

92 self.ip_range.remove(IPAddress(self.network.broadcast))

93 self.ip_range.remove(IPAddress(self.network.network))

94

95 try:

96 # get MAC address of gateway

97 self.gate_mac = util.get_mac(self.gateway, self.interface)

98 if not self.gate_mac:

99 raise DaemonError()

100 except Exception:

101 self.logger.error("Unable to get MAC address of Gateway")

102 raise DaemonError()

103

104 def _return_to_normal(self):

105 """This method should be overriden to define the actions to be done when

stopping the daemon."""

106 pass

107

108 def exit(self, signal_number, stack_frame):

109 """This method is called if the daemon stops."""

110 self._return_to_normal()

111 raise SystemExit()

112

113 def run(self):

114 """This method should be overriden to define the daemon’s behaviour."""

115 pass

116

117

118 class HolisticDaemonApp(_DaemonApp):

119 """Implements the abstract class _DaemonApp and also implements the holistic

spoofing mode of Apate.

120 The holistic spoofing mode requires less resources than the selective spoofing

mode,

121 e.g.: redis-server is not needed. This mode is suitable for small networks (e.g.

/24).

122 """

123

Tobias Dam 77

A. Source Code

124 __SLEEP = 20

125 """int: Defines the time to sleep after packets are sent before they are sent

anew."""

126

127 def __init__(self, logger, interface, pidfile, stdout, stderr):

128 """Initialises several things needed to define the daemons behaviour.

129

130 Args:

131 logger (logging.Logger): Used for logging messages.

132 interface (str): The network interface which should be used. (e.g. eth0)

133 pidfile (str): Path of the pidfile, used by the daemon.

134 stdout (str): Path of stdout, used by the daemon.

135 stderr (str): Path of stderr, used by the daemon.

136

137 Raises:

138 DaemonError: Signalises the failure of the daemon.

139 """

140 super(self.__class__, self).__init__(logger, interface, pidfile, stdout,

stderr)

141

142 self.sniffthread = HolisticSniffThread(self.interface, self.gateway, self.

mac, self.gate_mac)

143 self.sniffthread.daemon = True

144

145 def _return_to_normal(self):

146 """This method is called when the daemon is stopping.

147 First, sends a GARP broadcast request to all clients to tell them the real

gateway.

148 Then an ARP request is sent to every client, so that they answer the real

gateway and update its ARP cache.

149 """

150 # clients gratutious arp

151 sendp(

152 Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=self.

gateway, hwdst=ETHER_BROADCAST,

153 hwsrc=self.gate_mac))

154 # to clients so that they send and arp reply to the gateway

155 sendp(Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=str(

self.network), hwsrc=self.gate_mac))

156

157 def exit(self, signal_number, stack_frame):

Tobias Dam 78

A. Source Code

158 """This method is called from the python-daemon when the daemon is stopping.

159 Threads are stopped and clients are despoofed via _return_to_normal().

160 """

161 self._return_to_normal()

162 raise SystemExit()

163

164 def run(self):

165 """Starts the thread, which is sniffing incoming ARP packets and sends out

packets to spoof

166 all clients on the network and the gateway. This packets are sent every

__SLEEP seconds.

167

168 Note:

169 First, a ARP request packet is generated for every possible client of

the network.

170 This packets are directed at the gateway and update existing entries of

the gateway’s ARP table.

171 So the gateway is not flooded with entries for non-existing clients.

172

173 Second, a GARP broadcast request packet is generated to spoof every

client on the network.

174 """

175 # start sniffing thread

176 self.sniffthread.start()

177

178 # generates a packet for each possible client of the network

179 # these packets update existing entries in the arp table of the gateway

180 packets = [Ether(dst=self.gate_mac) / ARP(op=1, psrc=str(x), pdst=str(x))

for x in self.ip_range]

181 # gratuitous arp to clients

182 # updates the gateway entry of the clients arp table

183 packets.append(Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway,

pdst=self.gateway,

184 hwdst=ETHER_BROADCAST))

185 while True:

186 sendp(packets)

187 time.sleep(self.__SLEEP)

188

189

190 class SelectiveDaemonApp(_DaemonApp):

Tobias Dam 79

A. Source Code

191 """Implements the abstract class _DaemonApp and also implements the selective

spoofing mode of Apate.

192 The selective spoofing mode requires more resources than the holistic spoofing

mode,

193 e.g.: the redis-server. This mode only generates packets for existing clients (

not every possible client).

194 This mode is suitable for bigger networks, as the bottleneck of this mode is

virtually only the host discovery.

195 """

196

197 __SLEEP = 5

198 """int: Defines the time to sleep after packets are sent before they are sent

anew."""

199

200 def __init__(self, logger, interface, pidfile, stdout, stderr):

201 """Initialises several things needed to define the daemons behaviour.

202

203 Args:

204 logger (logging.Logger): Used for logging messages.

205 interface (str): The network interface which should be used. (e.g. eth0)

206 pidfile (str): Path of the pidfile, used by the daemon.

207 stdout (str): Path of stdout, used by the daemon.

208 stderr (str): Path of stderr, used by the daemon.

209

210 Raises:

211 DaemonError: Signalises the failure of the daemon.

212 """

213 super(self.__class__, self).__init__(logger, interface, pidfile, stdout,

stderr)

214 self.redis = ApateRedis(str(self.network.network), logger)

215

216 # Initialise threads

217 self.sniffthread = SelectiveSniffThread(self.interface, self.gateway, self.

mac, self.gate_mac, self.redis)

218 self.sniffthread.daemon = True

219 self.psthread = PubSubThread(self.redis, self.logger)

220 self.psthread.daemon = True

221 self.arpthread = ARPDiscoveryThread(self.gateway, str(self.network.network))

222 self.arpthread.daemon = True

223 self.igmpthread = IGMPDiscoveryThread(self.gateway, str(self.network.network

), self.ip, self.mac)

Tobias Dam 80

A. Source Code

224 self.igmpthread.daemon = True

225

226 def _return_to_normal(self):

227 """This method is called when the daemon is stopping.

228 First, sends a GARP broadcast request to all clients to tell them the real

gateway.

229 Then ARP replies for existing clients are sent to the gateway.

230 """

231 # spoof clients with GARP boradcast request

232 sendp(

233 Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=self.

gateway, hwdst=ETHER_BROADCAST,

234 hwsrc=self.gate_mac))

235

236 # generate ARP reply packet for every existing client and spoof the gateway

237 packets = [Ether(dst=self.gate_mac) / ARP(op=2, psrc=dev[0], pdst=self.

gateway, hwsrc=dev[1]) for dev in self.redis.get_devices_values(

filter_values=True)]

238 sendp(packets)

239

240 def exit(self, signal_number, stack_frame):

241 """This method is called from the python-daemon when the daemon is stopping.

242 Threads are stopped and clients are despoofed via _return_to_normal().

243 """

244 self._return_to_normal()

245 raise SystemExit()

246

247 def run(self):

248 """Starts multiple threads sends out packets to spoof

249 all existing clients on the network and the gateway. This packets are sent

every __SLEEP seconds.

250 The existing clients (device entries) are read from the redis database.

251

252 Threads:

253 A SniffThread, which sniffs for incoming ARP packets and adds new

devices to the redis db.

254 Two HostDiscoveryThread, which are searching for existing devices on the

network.

255 A PubSubThread, which is listening for redis expiry messages.

256

257 Note:

Tobias Dam 81

A. Source Code

258 First, ARP replies to spoof the gateway entry of existing clients arp

cache are generated.

259 ARP relpies to spoof the entries of the gateway are generated next.

260 Unlike the holistic mode only packets for existing clients are generated

.

261

262 """

263 self.sniffthread.start()

264 self.arpthread.start()

265 self.psthread.start()

266 self.igmpthread.start()

267

268 # lamda expression to generate arp replies to spoof the clients

269 exp1 = lambda dev: Ether(dst=dev[1]) / ARP(op=2, psrc=self.gateway, pdst=dev

[0], hwdst=dev[1])

270

271 # lamda expression to generate arp replies to spoof the gateway

272 exp2 = lambda dev: Ether(dst=self.gate_mac) / ARP(op=2, psrc=dev[0], pdst=

self.gateway, hwdst=self.gate_mac)

273

274 while True:

275 # generates packets for existing clients

276 # due to the labda expressions p1 and p2 this list comprehension, each

iteration generates 2 packets

277 # one to spoof the client and one to spoof the gateway

278 packets = [p(dev) for dev in self.redis.get_devices_values(filter_values

=True) for p in (exp1, exp2)]

279

280 sendp(packets)

281 time.sleep(self.__SLEEP)

282

283

284 class DaemonError(Exception):

285 """This error class indicates, that the daemon has failed."""

286 pass

A.10.4. lib/extended_runner.py

1 # coding=utf-8

2 """This module provides the class ExtendedRunner, which can be used to perfom

3 additional actions with the daemon context."""

Tobias Dam 82

A. Source Code

4 from daemon import runner

5

6

7 class ExtendedRunner(runner.DaemonRunner):

8 """This class can be used to perfom additional actions with the daemon context.

"""

9

10 def __init__(self, app):

11 super(self.__class__, self).__init__(app)

12 # extend __init__ here

13 # do something additional with daemon context

A.10.5. lib/misc_thread.py

1 # coding=utf-8

2 """This module provides several threads used by the ARP spoofing daemon.

3

4 Classes:

5 ARPDiscoveryThread: Discovers clients on the network by sending out ARP request.

6 IGMPDiscoveryThread: Discovers clients on the network by sending out IGMP

general queries.

7 PubSubThread: Listens for redis expiry messages and removes expired devices.

8

9 """

10 import time

11 import threading

12 import logging

13 logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

14 # suppresses following message

15 # WARNING: No route found for IPv6 destination :: (no default route?)

16 from scapy.all import conf, sendp, ARP, Ether, ETHER_BROADCAST, IP

17 from scapy.contrib.igmp import IGMP

18 import util

19

20

21 class ARPDiscoveryThread(threading.Thread):

22 """This thread is used to discover clients on the network by sending ARP

requests."""

23

24 def __init__(self, gateway, network):

25 """Initialises the thread.

Tobias Dam 83

A. Source Code

26

27 Args:

28 gateway (str): The gateways IP address.

29 network (str): The network IP address.

30

31 """

32 threading.Thread.__init__(self)

33 self.gateway = gateway

34 self.network = network

35

36 def run(self):

37 """Sends broadcast ARP requests for every possible client of the network.

38 Received ARP replies are processed by a SniffThread.

39 """

40 sendp(Ether(dst=ETHER_BROADCAST) / ARP(op=1, psrc=self.gateway, pdst=self.

network))

41

42

43 class IGMPDiscoveryThread(threading.Thread):

44 """This thread is used to discover clients on the network by sending IGMP

general queries."""

45

46 _IGMP_MULTICAST = "224.0.0.1"

47 """str: Multicast address used to send IGMP general queries."""

48 _SLEEP = 60

49 """int: Time to wait before sending packets anew."""

50 _IGMP_GENERAL_QUERY = 0x11

51 """int: Value of type Field for IGMP general queries."""

52 _TTL = 1

53 """int: Value for TTL for IP packet."""

54

55 def __init__(self, gateway, network, ip, mac):

56 """Initialises the thread.

57

58 Args:

59 gateway (str): The gateway’s IP address.

60 network (str): The network IP address.

61 mac (str): MAC address of this device.

62 ip (str): IP address of this device.

63

64 """

Tobias Dam 84

A. Source Code

65 threading.Thread.__init__(self)

66 self.gateway = gateway

67 self.network = network

68 self.mac = mac

69 self.ip = ip

70

71 def run(self):

72 """Sends IGMP general query packets using the multicast address 224.0.0.1.

73 Received replies are processed by a SniffThread.

74 """

75

76 # create IGMP general query packet

77 ether_part = Ether(src=self.mac)

78 ip_part = IP(ttl=self._TTL, src=self.ip, dst=self._IGMP_MULTICAST)

79 igmp_part = IGMP(type=self._IGMP_GENERAL_QUERY)

80

81 # Called to explicitely fixup associated IP and Ethernet headers

82 igmp_part.igmpize(ether=ether_part, ip=ip_part)

83

84 while True:

85 sendp(ether_part / ip_part / igmp_part)

86 time.sleep(self._SLEEP)

87

88

89 class PubSubThread(threading.Thread):

90 """This thread is used to listen for redis expiry keyspace event messages."""

91

92 __SUBSCRIBE_TO = "__keyevent@{}__:expired"

93 """Used to subscribe to the keyspace event expired."""

94

95 def __init__(self, redis, logger):

96 """Initialises the thread.

97

98 Args:

99 redis (apate_redis.ApateRedis): Used for obtaining the required PubSub

object.

100 logger (logging.Logger): Used to log messages.

101

102 """

103 threading.Thread.__init__(self)

104 self.redis = redis

Tobias Dam 85

A. Source Code

105 self.logger = logger

106 self.pubsub = self.redis.get_pubsub()

107

108 def run(self):

109 """Subscribes to redis expiry keyspace events and removes the ip address of

the expired device from the network set."""

110 self.pubsub.subscribe(self.__SUBSCRIBE_TO.format(self.redis.__DB))

111 for message in self.pubsub.listen():

112 self.logger.debug("Removed expired device {} from network {}".format(

util.get_device_ip(message[’data’]), util.get_device_net(message[’

data’])))

113 # removes the ip of the expired device (the removed device entry) from

the network set

114 self.redis._del_device_from_network(util.get_device_ip(message[’data’]),

util.get_device_net(message[’data’]))

115

116 def stop(self):

117 """Closes the connection of the PubSub object."""

118 self.pubsub.close()

A.10.6. lib/sniff_thread.py

1 # coding=utf-8

2 """This module provides several classes that are used to implement

3 a thread that listens to incoming ARP packets.

4

5 Classes:

6 _SniffThread: Abstract class, that should be inherited.

7 HolisticSniffThread: Inherits _SniffThread and implements the holistist spoofing

listener.

8 SelectiveSniffThread: Inherits _SniffThread and implements the selective

spoofing listener.

9

10 """

11 import thread

12 import logging

13 import threading

14

15 logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

16 # suppresses following message

17 # WARNING: No route found for IPv6 destination :: (no default route?)

Tobias Dam 86

A. Source Code

18 from scapy.all import sendp, ARP, Ether, IP, ETHER_BROADCAST, sniff

19 from scapy.contrib.igmp import IGMP

20

21 import util

22

23

24 class _SniffThread(threading.Thread):

25 """This is an abstract class, which should be inherited to define the

26 behaviour fo the sniffing thread."""

27

28 _DELAY = 7.0

29 """float: Delay after which packets are sent."""

30 _SNIFF_FILTER = "arp and inbound"

31 """str: tcpdump filter used for scapy’s sniff function."""

32 _LFILTER = staticmethod(lambda x: x.haslayer(ARP))

33 """function: lambda filter used for scapy’s sniff function."""

34

35 def __init__(self, interface, gateway, mac, gate_mac):

36 """Initialises several things needed to define the thread’s behaviour.

37

38 Args:

39 interface (str): The network interface which should be used. (e.g. eth0)

40 gateway (str): IP address of the gateway.

41 mac (str): MAC address of the spoofing device. (own MAC address)

42 gate_mac (str): MAC address of the gateway.

43

44 """

45 threading.Thread.__init__(self)

46 self.interface = interface

47 self.gateway = gateway

48 self.mac = mac

49 self.gate_mac = gate_mac

50

51 def run(self):

52 """Starts sniffing for incoming ARP packets with scapy.

53 Actions after receiving a packet ar defines via _packet_handler.

54 """

55 # the filter argument in scapy’s sniff function seems to be applied too late

56 # therefore some unwanted packets are processed (e.g. tcp packets of ssh

session)

Tobias Dam 87

A. Source Code

57 # but it still decreases the number of packets that need to be processed by

the lfilter function

58 sniff(prn=self._packet_handler, filter=self._SNIFF_FILTER, lfilter=self.

_LFILTER, store=0, iface=self.interface)

59

60 def _packet_handler(self, pkt):

61 """This method should be overriden to define the thread’s behaviour."""

62 pass

63

64 @staticmethod

65 def stop():

66 """May be used to kill the thread, if it is not a daemon thread."""

67 thread.exit()

68

69

70 class HolisticSniffThread(_SniffThread):

71 """Implements the abstract class _SniffThread and also implements

72 the listener of the holistic spoofing mode of Apate.

73 """

74

75 def __init__(self, interface, gateway, mac, gate_mac):

76 """Initialises several things needed to define the thread’s behaviour.

77

78 Args:

79 interface (str): The network interface which should be used. (e.g. eth0)

80 gateway (str): IP address of the gateway.

81 mac (str): MAC address of the spoofing device. (own MAC address)

82 gate_mac (str): MAC address of the gateway.

83

84 """

85 super(self.__class__, self).__init__(interface, gateway, mac, gate_mac)

86

87 def _packet_handler(self, pkt):

88 """This method is called for each packet received through scapy’s sniff

function.

89 Incoming ARP requests are used to spoof involved devices.

90

91 Args:

92 pkt (str): Received packet via scapy’s sniff (through socket.recv).

93 """

94 # when ARP request

Tobias Dam 88

A. Source Code

95 if pkt[ARP].op == 1:

96

97 # packets intended for this machine (upribox)

98 if pkt[Ether].dst == self.mac:

99 # incoming packets(that are sniffed): Windows correctly fills in the

hwdst, linux (router) only 00:00:00:00:00:00

100 # this answers packets asking if we are the gateway (directly not

via broadcast)

101 # Windows does this 3 times before sending a broadcast request

102 sendp(Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=pkt[ARP].pdst, pdst

=pkt[ARP].psrc, hwdst=pkt[ARP].hwsrc, hwsrc=self.mac))

103

104 # broadcast request to or from gateway

105 elif pkt[Ether].dst.lower() == util.hex2str_mac(ETHER_BROADCAST) and (

pkt[ARP].psrc == self.gateway or pkt[ARP].pdst == self.gateway):

106 # spoof transmitter

107 packets = [Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=pkt[ARP].pdst,

pdst=pkt[ARP].psrc, hwsrc=self.mac, hwdst=pkt[ARP].hwsrc)]

108

109 # get mac address of original target

110 dest = self.gate_mac

111 if pkt[ARP].pdst != self.gateway:

112 # send arp request if destination was not the gateway

113 dest = util.get_mac(pkt[ARP].pdst, self.interface)

114

115 if dest:

116 # spoof receiver

117 packets.append(Ether(dst=dest) / ARP(op=2, psrc=pkt[ARP].psrc,

hwsrc=self.mac, pdst=pkt[ARP].pdst, hwdst=dest))

118

119 # some os didn’t accept an answer immediately (after sending the

first ARP request after boot

120 # so, send packets after some delay

121 threading.Timer(self._DELAY, sendp, [packets]).start()

122

123

124 class SelectiveSniffThread(_SniffThread):

125 """Implements the abstract class _SniffThread and also implements

126 the listener of the selective spoofing mode of Apate.

127 """

128

Tobias Dam 89

A. Source Code

129 _SNIFF_FILTER = "(arp or igmp) and inbound"

130 """str: tcpdump filter used for scapy’s sniff function."""

131 _LFILTER = staticmethod(lambda x: any([x.haslayer(layer) for layer in (ARP, IGMP

)]))

132 """function: lambda filter used for scapy’s sniff function."""

133

134 def __init__(self, interface, gateway, mac, gate_mac, redis):

135 """Initialises several things needed to define the thread’s behaviour.

136

137 Args:

138 interface (str): The network interface which should be used. (e.g. eth0)

139 gateway (str): IP address of the gateway.

140 mac (str): MAC address of the spoofing device. (own MAC address)

141 gate_mac (str): MAC address of the gateway.

142 redis (apate_redis.ApateRedis): Used to add new devices to redis db.

143

144 """

145 super(self.__class__, self).__init__(interface, gateway, mac, gate_mac)

146 self.redis = redis

147

148 def _packet_handler(self, pkt):

149 """This method is called for each packet received through scapy’s sniff

function.

150

151 Args:

152 pkt (str): Received packet via scapy’s sniff (through socket.recv).

153 """

154

155 if pkt.haslayer(ARP):

156 self._arp_handler(pkt)

157 elif pkt.haslayer(IGMP):

158 self._igmp_handler(pkt)

159

160 def _arp_handler(self, pkt):

161 """"This method is called for each incoming ARP packet received through

scapy’s sniff function.

162 Incoming ARP requests are used to spoof involved devices and add new devices

163 to the redis db. New devices are also added if ARP replies are received.

164

165 Args:

166 pkt (str): Received packet via scapy’s sniff (through socket.recv).

Tobias Dam 90

A. Source Code

167 """

168 # when ARP request

169 if pkt[ARP].op == 1:

170 # packets intended for this machine (upribox)

171 if pkt[Ether].dst == self.mac:

172 # incoming packets(that are sniffed): Windows correctly fills in the

hwdst, linux (router) only 00:00:00:00:00:00

173 # this answers packets asking if we are the gateway (directly not

via broadcast)

174 # Windows does this 3 times before sending a broadcast request

175 sendp(Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=pkt[ARP].pdst, pdst

=pkt[ARP].psrc, hwdst=pkt[ARP].hwsrc, hwsrc=self.mac))

176 # add transmitting device to redis db

177 self.redis.add_device(pkt[ARP].psrc, pkt[ARP].hwsrc)

178

179 # broadcast request to or from gateway

180 elif pkt[Ether].dst.lower() == util.hex2str_mac(ETHER_BROADCAST) and (

pkt[ARP].psrc == self.gateway or pkt[ARP].pdst == self.gateway):

181 # spoof transmitter

182 packets = [Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=pkt[ARP].pdst,

pdst=pkt[ARP].psrc, hwsrc=self.mac, hwdst=pkt[ARP].hwsrc)]

183

184 # get mac address of original target

185 dest = self.gate_mac

186 if pkt[ARP].pdst != self.gateway:

187 # send arp request if destination was not the gateway

188 dest = util.get_mac(pkt[ARP].pdst, self.interface)

189

190 if dest:

191 # spoof receiver

192 packets.append(Ether(dst=dest) / ARP(op=2, psrc=pkt[ARP].psrc,

hwsrc=self.mac, pdst=pkt[ARP].pdst, hwdst=dest))

193

194 # add transmitting device to redis db

195 self.redis.add_device(pkt[ARP].psrc, pkt[ARP].hwsrc)

196 # add receiving device to redis db

197 self.redis.add_device(pkt[ARP].pdst, dest)

198

199 # some os didn’t accept an answer immediately (after sending the

first ARP request after boot

200 # so, send packets after some delay

Tobias Dam 91

A. Source Code

201 threading.Timer(self._DELAY, sendp, [packets]).start()

202 else:

203 # ARP reply

204 # add transmitting device to redis db

205 self.redis.add_device(pkt[ARP].psrc, pkt[ARP].hwsrc)

206

207 def _igmp_handler(self, pkt):

208 """"This method is called for each IGMP packet received through scapy’s

sniff function.

209 Incoming IGMP answers are used to spoof involved devices and add new devices

210 to the redis db.

211

212 Args:

213 pkt (str): Received packet via scapy’s sniff (through socket.recv).

214 """

215 # if util.get_mac(pkt[IP].src,self.interface):

216 self.redis.add_device(pkt[IP].src, pkt[Ether].src)

217 sendp([Ether(dst=pkt[Ether].src) / ARP(op=2, psrc=self.gateway, pdst=pkt[IP

].src, hwdst=pkt[Ether].src),

218 Ether(dst=self.gate_mac) / ARP(op=2, psrc=pkt[IP].src, pdst=self.

gateway, hwdst=self.gate_mac)])

A.10.7. lib/util.py

1 # coding=utf-8

2 """Provides several useful functions used by other modules."""

3 import logging

4

5 logging.getLogger("scapy.runtime").setLevel(logging.ERROR)

6 # suppresses following message

7 # WARNING: No route found for IPv6 destination :: (no default route?)

8 from scapy.all import srp, ARP, Ether, ETHER_BROADCAST

9

10

11 def hex2str_mac(hex_val):

12 r"""Converts a hex mac address into a human-readable string representation.

13

14 Example:

15 "\x11\x22\x33\x44\x55\x66" --> "11:22:33:44:55:66"

16

17 Args:

Tobias Dam 92

A. Source Code

18 hex_val (str): String containg a mac address as hex values.

19

20 Results:

21 str: Human-readably MAC address.

22

23 """

24 return ’:’.join(["{:02x}".format(ord(x)) for x in hex_val])

25

26

27 def get_mac(ip, interface):

28 """Returns the according MAC address for the provided IP address.

29

30 Args:

31 ip (str): IP address used to get MAC address.

32 interface (str): Interface used to send ARP reuest.

33

34 Results:

35 According MAC address as string (11:22:33:44:55:66)

36 or None if no answer has been received.

37 """

38 ans, unans = srp(Ether(dst=ETHER_BROADCAST) / ARP(pdst=ip), timeout=2, iface=

interface, inter=0.1, verbose=0)

39 for snd, rcv in ans:

40 return rcv.sprintf(r"%Ether.src%")

41

42

43 def get_device_enabled(redis_device):

44 """Returns the enabled part of a device entry."""

45 return redis_device.rsplit(":", 1)[-1]

46

47

48 def get_device_ip(redis_device):

49 """Returns the ip address part of a device entry."""

50 return redis_device.rsplit(":", 2)[-2]

51

52

53 def get_device_net(redis_device):

54 """Returns the network address part of a device entry."""

55 return redis_device.split(":", 3)[2]

Tobias Dam 93

A. Source Code

A.10.8. requirements.txt

1 argparse==1.2.1

2 distribute==0.6.24

3 docutils==0.12

4 hiredis==0.2.0

5 lockfile==0.12.2

6 netaddr==0.7.18

7 netifaces==0.10.4

8 python-daemon==2.1.1

9 redis==2.10.5

10 scapy==2.3.2

11 wsgiref==0.1.2

A.11. upribox_interface

A.11.1. urls.py

1 """webapp URL Configuration

2

3 The ‘urlpatterns‘ list routes URLs to views. For more information please see:

4 https://docs.djangoproject.com/en/1.8/topics/http/urls/

5 Examples:

6 Function views

7 1. Add an import: from my_app import views

8 2. Add a URL to urlpatterns: url(r’^$’, views.home, name=’home’)

9 Class-based views

10 1. Add an import: from other_app.views import Home

11 2. Add a URL to urlpatterns: url(r’^$’, Home.as_view(), name=’home’)

12 Including another URLconf

13 1. Add an import: from blog import urls as blog_urls

14 2. Add a URL to urlpatterns: url(r’^blog/’, include(blog_urls))

15 """

16 from django.conf.urls import include, url

17 from django.contrib.auth import views as auth_views

18 from django.views.generic.base import RedirectView

19

20 urlpatterns = [

21

22 # www config

Tobias Dam 94

A. Source Code

23 url(r’^help/$’, "www.views.faq", name="upri_faq"),

24

25 # more config

26 url(r’^more/$’, "more.views.more_config", name="upri_more"),

27 url(r’^more/ssh/toggle$’, "more.views.ssh_toggle", name="upri_ssh_toggle"),

28 url(r’^more/apate/toggle$’, "more.views.apate_toggle", name="upri_apate_toggle")

,

29

30 # Auth config

31 url(r’^login/$’, auth_views.login, {"template_name": "login.html"}, name="

upri_login"),

32 url(r’^logout/$’, auth_views.logout, {"next_page": "upri_login"}, name="

upri_logout"),

33

34 # WLAN config

35 url(r’^$’, RedirectView.as_view(pattern_name=’upri_silent’, permanent=False),

name=’upri_index’),

36 url(r’^silent/$’, "wlan.views.silent", name="upri_silent"),

37 url(r’^ninja/$’, "wlan.views.ninja", name="upri_ninja"),

38 url(r’^ninja/toggle/$’, "wlan.views.ninja_toggle", name="upri_ninja_toggle"),

39 url(r’^ninja/check_pi3/$’, "wlan.views.check_pi3", name="upri_check_pi3"),

40 url(r’^jobstatus/$’, "www.views.jobstatus", name="upri_jobstatus"),

41 url(r’^jobstatus/clear/$’, "www.views.clear_jobstatus", name="

upri_clear_jobstatus"),

42

43 # VPN config

44 url(r’^vpn/$’, "vpn.views.vpn_config", name="upri_vpn"),

45 url(r’^vpn/toggle/$’, "vpn.views.vpn_toggle", name="upri_vpn_toggle"),

46 url(r’^vpn/check_connection/$’, "vpn.views.check_connection", name="

upri_check_connection"),

47 url(r’^vpn/generate/$’, "vpn.views.vpn_generate", name="upri_vpn_generate"),

48 url(r’^vpn/delete/(?P<slug>\w+)$’, "vpn.views.vpn_delete", name="upri_vpn_delete

"),

49 url(r’^vpn/(?P<download_slug>\w+)/upribox.ovpn$’, "vpn.views.vpn_download", name

="upri_vpn_download"),

50 url(r’^vpn/createlink/(?P<slug>\w+)$’, "vpn.views.vpn_create_download", name="

upri_vpn_create_download"),

51 url(r’^vpn/get/(?P<slug>\w+)$’, "vpn.views.vpn_get", name="upri_vpn_get"),

52

53 # statistics config

Tobias Dam 95

A. Source Code

54 url(r’^statistics/$’, "statistics.views.get_statistics", name="upri_statistics")

,

55 url(r’^statistics/get$’, "statistics.views.json_statistics", name="

upri_get_statistics"),

56

57]

A.11.2. more/views.py

1 # -*- coding: utf-8 -*-

2 from __future__ import unicode_literals

3 from django.template import RequestContext

4 from django.shortcuts import render_to_response

5 from django.contrib.auth.decorators import login_required

6 from django.http import Http404, HttpResponse

7 from lib import jobs

8 from lib.info import UpdateStatus

9 from .forms import AdminForm

10 import logging

11 from django.contrib.auth.models import User

12 from . import jobs as sshjobs

13 from django.core.urlresolvers import reverse

14

15 # Get an instance of a logger

16 logger = logging.getLogger(’uprilogger’)

17

18 @login_required

19 def more_config(request):

20 context = RequestContext(request)

21

22 if request.method == ’POST’:

23

24 form = AdminForm(request, request.POST)

25

26 if form.is_valid():

27 new_password = form.cleaned_data[’password2’]

28 new_username = form.cleaned_data[’username’]

29

30 old_password = form.cleaned_data[’oldpassword’]

31 old_username = request.user.username

32

Tobias Dam 96

A. Source Code

33 logger.info("updating user %s..." % old_username)

34 u = User.objects.get(username=old_username)

35

36 #sanity check, this should never happen

37 if not u:

38 logger.error("unexpected error: user %s does not exist" %

old_username)

39 return HttpResponse(status=500)

40

41 u.set_password(new_password)

42 u.username = new_username

43 u.save()

44 logger.info("user %s updated to %s (password changed: %s)" % (

old_username, new_username, new_password != old_password))

45 context.push({’message’: True})

46

47 else:

48 logger.error("admin form validation failed")

49

50 else:

51 form = AdminForm(request)

52

53 update_status = UpdateStatus()

54

55 context.push({

56 ’form’: form,

57 ’messagestore’: jobs.get_messages(),

58 ’update_time’: update_status.update_utc_time,

59 ’version’: update_status.get_version()

60 })

61

62 return render_to_response("more.html", context)

63

64 @login_required

65 def ssh_toggle(request):

66 if request.method != ’POST’:

67 raise Http404()

68

69 state = request.POST[’enabled’]

70 jobs.queue_job(sshjobs.toggle_ssh, (state,))

71

Tobias Dam 97

A. Source Code

72 return render_to_response("modal.html", {"message": True, "refresh_url": reverse

(’upri_more’)})

73

74 @login_required

75 def apate_toggle(request):

76 if request.method != ’POST’:

77 raise Http404()

78

79 state = request.POST[’enabled’]

80 jobs.queue_job(sshjobs.toggle_apate, (state,))

81

82 return render_to_response("modal.html", {"message": True, "refresh_url": reverse

(’upri_more’)})

A.11.3. more/jobs.py

1 # -*- coding: utf-8 -*-

2 from __future__ import unicode_literals

3 import lib.jobs as jobs

4 import lib.utils as utils

5 from django.utils.translation import ugettext as _

6 import logging

7 logger = logging.getLogger(’uprilogger’)

8

9

10 def toggle_ssh(state):

11

12 if state in [’yes’, ’no’]:

13 try:

14 if state == ’yes’:

15 jobs.job_message(_("SSH wird gestartet..."))

16 else:

17 jobs.job_message(_("SSH wird gestoppt..."))

18

19 logger.debug("restarting ssh")

20 utils.exec_upri_config(’enable_ssh’, state)

21 utils.exec_upri_config(’restart_ssh’)

22 jobs.job_message(_("Konfiguration von SSH erfolgreich."))

23

24 except utils.AnsibleError as e:

25 logger.error("ansible failed with error %d: %s" % (e.rc, e.message))

Tobias Dam 98

A. Source Code

26 if state == ’yes’:

27 jobs.job_message(_("Starten von SSH fehlgeschlagen."))

28 else:

29 jobs.job_message(_("Stoppen von SSH fehlgeschlagen."))

30 else:

31 jobs.job_message(_("Es ist ein unbekannter Fehler aufgetreten."))

32

33 def toggle_apate(state):

34

35 if state in [’yes’, ’no’]:

36 try:

37 if state == ’yes’:

38 jobs.job_message(_("Apate ARP Spoofing Daemon wird gestartet..."))

39 else:

40 jobs.job_message(_("Apate ARP Spoofing Daemon wird gestoppt..."))

41

42 logger.debug("restarting apate")

43 utils.exec_upri_config(’enable_apate’, state)

44 utils.exec_upri_config(’restart_apate’)

45 jobs.job_message(_("Konfiguration von Apate ARP Spoofing Daemon

erfolgreich."))

46

47 except utils.AnsibleError as e:

48 logger.error("ansible failed with error %d: %s" % (e.rc, e.message))

49 if state == ’yes’:

50 jobs.job_message(_("Starten von Apate ARP Spoofing Daemon

fehlgeschlagen."))

51 else:

52 jobs.job_message(_("Stoppen von Apate ARP Spoofing Daemon

fehlgeschlagen."))

53 else:

54 jobs.job_message(_("Es ist ein unbekannter Fehler aufgetreten."))

A.11.4. more/templates/more.html

1 {% extends request.is_ajax|yesno:"base_ajax.html,base.html" %}

2

3 {% load i18n %}

4 {% load widget_tweaks %}

5 {% load base_extras %}

6

Tobias Dam 99

A. Source Code

7 {% block title %}{% trans "Admin - upribox" %}{% endblock %}

8

9 {% block header %}

10 <h1>{% trans "Admin" %}</h1>

11 <p>{% trans "Admin-Daten ändern." %}</p>

12 {% endblock %}

13

14 {% block content %}

15

16 {% trans "Admin-Zugangsdaten" as form_title %}

17 {% url "upri_more" as href %}

18 {% include "form.html" %}

19

20 <h2>{% trans "SSH" %}</h2>

21 <p>{% trans "Mithilfe dieser Funktion können erfahrene Benutzer die upribox

selbstständig konfigurieren." %}</p>

22 <form>

23 <fieldset>

24 <legend>{% trans "Ein-/Ausschalten" %}</legend>

25

26 {% get_fact ’ssh’ ’general’ ’enabled’ as sshenabled%}

27

28 {% if sshenabled == ’yes’%}

29 <div class="switch icon i-on">

30 <p>{% trans "SSH ist aktiviert" %}</p>

31 <button class="js-toggle-button" data-state-enabled="no" href="

{% url ’upri_ssh_toggle’ %}">{% trans "Ausschalten" %}</

button>

32 </div>

33 {% else %}

34 <div class="switch icon i-off">

35 <p>{% trans "SSH ist deaktiviert" %}</p>

36 <button class="js-toggle-button" data-state-enabled="yes" href="

{% url ’upri_ssh_toggle’ %}">{% trans "Einschalten" %}</

button>

37 </div>

38 {% endif %}

39 </fieldset>

40 </form>

41

42 <h2>{% trans "Apate" %}</h2>

Tobias Dam 100

A. Source Code

43 <p>{% trans "Mithilfe dieser Funktion können erfahrene Benutzer den Apate ARP

Spoofing Daemon konfigurieren." %}</p>

44 <form>

45 <fieldset>

46 <legend>{% trans "Ein-/Ausschalten" %}</legend>

47

48 {% get_fact ’apate’ ’general’ ’enabled’ as apateenabled%}

49

50 {% if apateenabled == ’yes’%}

51 <div class="switch icon i-on">

52 <p>{% trans "Apate ist aktiviert" %}</p>

53 <button class="js-toggle-button" data-state-enabled="no" href="

{% url ’upri_apate_toggle’ %}">{% trans "Ausschalten" %}</

button>

54 </div>

55 {% else %}

56 <div class="switch icon i-off">

57 <p>{% trans "Apate ist deaktiviert" %}</p>

58 <button class="js-toggle-button" data-state-enabled="yes" href="

{% url ’upri_apate_toggle’ %}">{% trans "Einschalten" %}</

button>

59 </div>

60 {% endif %}

61 </fieldset>

62 </form>

63

64 <h2>{% trans "upribox Software" %}</h2>

65 <p>{% trans "Letztes update: " %} {{ update_time|date:"SHORT_DATETIME_FORMAT" }}

(UTC)</p>

66 <p>Version: {{ version }}</p>

67

68 {% endblock %}

A.12. django/files/upri-config.py

1 #!/usr/bin/env python

2 import json

3 import sys

4 import subprocess

5 from jsonmerge import merge

Tobias Dam 101

A. Source Code

6 from os import path

7 import sys

8 sys.path.insert(0, "/usr/share/nginx/www-upri-interface/lib/")

9 import passwd

10 import ssid

11 import domain

12 import re

13 from datetime import datetime

14 from urlparse import urlparse

15 import os

16 import sqlite3

17

18 # directory where facts are located

19 FACTS_DIR = "/etc/ansible/facts.d"

20 # path to the ansible-playbook executeable

21 ANSIBLE_COMMAND = "/usr/local/bin/ansible-playbook"

22 # path to the used inventory

23 ANSIBLE_INVENTORY = "/var/lib/ansible/local/environments/production/inventory_pull"

24 # path to the used playbook

25 ANSIBLE_PLAY = "/var/lib/ansible/local/local.yml"

26 # path to the openvpn client config template

27 CLIENT_TEMPLATE = "/etc/openvpn/client_template"

28

29 #

30 # revokes previously generated openvpn client certificates

31 # return values:

32 # 26 failed to revoke certificate

33 def action_delete_profile(slug):

34 try:

35 filename = os.path.basename(slug)

36

37 rc = subprocess.call([’/usr/bin/openssl’, ’ca’, ’-revoke’, ’/etc/openvpn/ca

/%sCert.pem’ % filename])

38 rc = subprocess.call([’/usr/bin/openssl’, ’ca’, ’-gencrl’, ’-crlhours’, ’1’,

’-out’, ’/etc/openssl/demoCA/crl.pem’])

39

40 #os.remove(’/etc/openvpn/ca/%sKey.pem’ % filename)

41 #os.remove(’/etc/openvpn/ca/%sCert.pem’ % filename)

42

43 except Exception as e:

44 print "failed to delete client files"

Tobias Dam 102

A. Source Code

45 print str(e)

46 return 26

47

48 return 0

49

50 #

51 # generate openvpn client certificates and saves the

52 # generated openvpn client config into the database

53 # return values:

54 # 16: database error

55 # 21: entry does not exists in database

56 # 24: provided domain is not valid

57 # 23: unable to create client certificate files

58 # 22: openvpn client template is missing

59 def action_generate_profile(profile_id):

60 with open(’/etc/ansible/default_settings.json’, ’r’) as f:

61 config = json.load(f)

62

63 dbfile = config[’django’][’db’]

64

65 try:

66 conn = sqlite3.connect(dbfile)

67 c = conn.cursor()

68 c.execute("SELECT slug,dyndomain FROM vpn_vpnprofile WHERE id=?",(profile_id

,))

69 data = c.fetchone()

70 if not data:

71 #invalid profile id

72 print ’profile id does not exist in database’

73 return 21

74

75 slug = data[0]

76 dyndomain = data[1]

77

78 if not check_domain(dyndomain):

79 return 24

80

81 dyndomain = domain.Domain(data[1]).get_match()

82

83 filename = os.path.basename(slug)

84

Tobias Dam 103

A. Source Code

85 rc = subprocess.call([’/usr/bin/openssl’, ’req’, ’-newkey’, ’rsa:2048’, ’-

nodes’, ’-subj’, "/C=AT/ST=Austria/L=Vienna/O=Usable Privacy Box/OU=VPN/

CN=%s" % filename, ’-keyout’, ’/etc/openvpn/ca/%sKey.pem’ % filename, ’-

out’, ’/etc/openvpn/ca/%sReq.pem’ % filename])

86

87 if rc != 0:

88 print "error while creating client certificate reques"

89 return 23

90

91 subprocess.call([’/usr/bin/openssl’, ’ca’, ’-in’, ’/etc/openvpn/ca/%sReq.pem

’ % filename, ’-days’, ’730’, ’-batch’, ’-out’, ’/etc/openvpn/ca/%sCert.

pem’ % filename, ’-notext’, ’-cert’, ’/etc/openvpn/ca/caCert.pem’, ’-

keyfile’, ’/etc/openvpn/ca/caKey.pem’])

92

93 if rc != 0:

94 print "error while creating client certificate"

95 return 23

96

97 os.remove(’/etc/openvpn/ca/%sReq.pem’ % filename)

98

99 if os.path.isfile(CLIENT_TEMPLATE):

100 with open(CLIENT_TEMPLATE, ’r’) as template, open(’/etc/openvpn/ca/%sKey

.pem’ % filename, ’r’) as client_key, open(’/etc/openvpn/ca/%sCert.

pem’ % filename, ’r’) as client_cert:

101 temp = template.read()

102 temp = temp.replace("#CLIENT_KEY", client_key.read())

103 temp = temp.replace("#CLIENT_CERT", client_cert.read())

104 temp = temp.replace("<IP-ADRESS>", dyndomain)

105

106 c.execute("UPDATE vpn_vpnprofile SET config=? where id=?", (temp,

profile_id))

107 conn.commit()

108 else:

109 print "client template is missing"

110 return 22

111

112 conn.close()

113 except Exception as e:

114 print "failed to write to database"

115 print str(e)

116 return 16

Tobias Dam 104

A. Source Code

117 return 0

118

119 #

120 # parse the privoxy logfiles and insert data into django db

121 # return values:

122 # 16: database error

123 # 20: new entries have been added

124 def action_parse_logs(arg):

125 rlog = re.compile(’(\d{4}-\d{2}-\d{2} (\d{2}:?){3}).\d{3} [a-z0-9]{8} Crunch:

Blocked: (.*)’)

126

127 with open(’/etc/ansible/default_settings.json’, ’r’) as f:

128 config = json.load(f)

129

130 dbfile = config[’django’][’db’]

131 logfile = os.path.join(config[’log’][’general’][’path’], config[’log’][’privoxy’

][’subdir’], config[’log’][’privoxy’][’logfiles’][’logname’])

132

133 if os.path.isfile(logfile):

134 print "parsing privoxy logfile %s" % logfile

135 with open(logfile, ’r’) as privoxy:

136 logentries = []

137 for line in privoxy:

138 try:

139 res = re.match(rlog, line)

140 if res:

141 sdate = res.group(1)

142 ssite = res.group(3)

143 pdate = datetime.strptime(sdate, ’%Y-%m-%d %H:%M:%S’)

144 psite = urlparse(ssite).netloc

145 logentries.append((psite,pdate))

146 print "found new block: [%s] %s" % (sdate,psite)

147 except Exception as e:

148 print "failed to parse line \"%s\": %s" % (line, e.message)

149

150 #write updates into db

151 if len(logentries) > 0:

152 try:

153 conn = sqlite3.connect(dbfile)

154 c = conn.cursor()

Tobias Dam 105

A. Source Code

155 c.executemany("INSERT INTO statistics_privoxylogentry(url,log_date)

VALUES (?,?)", logentries)

156 c.execute("DELETE FROM statistics_privoxylogentry WHERE log_date <=

date(’now’,’-6 month’)")

157 conn.commit()

158 conn.close()

159 # delete logfile

160 os.remove(logfile)

161 # todo: implement reload

162 subprocess.call(["/usr/sbin/service", "privoxy", "restart"])

163 except Exception as e:

164 print "failed to write to database"

165 return 16

166 return 20

167

168 else:

169 print "failed to parse privoxy logfile %s: file not found" % logfile

170 return 0

171

172 #

173 # set a new ssid for the upribox "silent" wlan

174 # return values:

175 # 12: ssid does not meet policy

176 #

177 def action_set_ssid(arg):

178 print ’setting ssid to "%s"’ % arg

179 if not check_ssid(arg):

180 return 12

181 ssid = { "upri": { "ssid": arg } }

182 write_role(’wlan’, ssid)

183

184 # return values:

185 # 11: password does not meet password policy

186 def action_set_password(arg):

187 print ’setting password’

188 if not check_passwd(arg):

189 return 11

190 passwd = { "upri": { "passwd": arg } }

191 write_role(’wlan’, passwd)

192

193 #

Tobias Dam 106

A. Source Code

194 # return values:

195 # 12: ssid does not meet policy

196 #

197 def action_set_tor_ssid(arg):

198 print ’setting tor ssid to "%s"’ % arg

199 if not check_ssid(arg):

200 return 12

201 ssid = { "ninja": { "ssid": arg } }

202 write_role(’wlan’, ssid)

203

204 # return values:

205 # 11: password does not meet password policy

206 def action_set_tor_password(arg):

207 print ’setting tor password’

208 if not check_passwd(arg):

209 return 11

210 passwd = { "ninja": { "passwd": arg } }

211 write_role(’wlan’, passwd)

212

213 def action_restart_wlan(arg):

214 print ’restarting wlan...’

215 return call_ansible(’ssid’)

216

217 # return values:

218 # 10: invalid argument

219 def action_set_tor(arg):

220 if arg not in [’yes’, ’no’]:

221 print ’error: only "yes" and "no" are allowed’

222 return 10

223 print ’tor enabled: %s’ % arg

224 passwd = { "general": { "enabled": arg } }

225 write_role(’tor’, passwd)

226

227 def action_restart_tor(arg):

228 print ’restarting tor...’

229 return call_ansible(’toggle_tor’)

230

231 # return values:

232 # 10: invalid argument

233 def action_set_vpn(arg):

234 if arg not in [’yes’, ’no’]:

Tobias Dam 107

A. Source Code

235 print ’error: only "yes" and "no" are allowed’

236 return 10

237 print ’vpn enabled: %s’ % arg

238 vpn = { "general": { "enabled": arg } }

239 write_role(’vpn’, vpn)

240 return 0

241

242 def action_restart_vpn(arg):

243 print ’restarting vpn...’

244 #return 0 # TODO implement

245 return call_ansible(’toggle_vpn’)

246

247 # return values:

248 # 10: invalid argument

249 def action_set_ssh(arg):

250 if arg not in [’yes’, ’no’]:

251 print ’error: only "yes" and "no" are allowed’

252 return 10

253 print ’ssh enabled: %s’ % arg

254 en = { "general": { "enabled": arg } }

255 write_role(’ssh’, en)

256

257 def action_restart_ssh(arg):

258 print ’restarting ssh...’

259 return call_ansible(’toggle_ssh’)

260

261 # return values:

262 # 10: invalid argument

263 def action_set_apate(arg):

264 if arg not in [’yes’, ’no’]:

265 print ’error: only "yes" and "no" are allowed’

266 return 10

267 print ’apate enabled: %s’ % arg

268 en = { "general": { "enabled": arg } }

269 write_role(’apate’, en)

270

271 def action_restart_apate(arg):

272 print ’restarting apate...’

273 return call_ansible(’toggle_apate’)

274

275 def check_passwd(arg):

Tobias Dam 108

A. Source Code

276 pw = passwd.Password(arg)

277 if not pw.is_valid():

278 if not pw.has_digit():

279 print ’the password must contain at least 1 digit’

280 if not pw.has_lowercase_char():

281 print ’the password must contain at least 1 lowercase character’

282 if not pw.has_uppercase_char():

283 print ’the password must contain at least 1 uppercase character’

284 if not pw.has_symbol():

285 print ’the password must contain at least 1 special character’

286 if not pw.has_allowed_length():

287 print ’the password must be between 8 to 63 characters long’

288 if not pw.has_only_allowed_chars():

289 print ’the password must only contain following special characters: %s’

% pw.get_allowed_chars()

290

291 return False

292 else:

293 return True

294

295 def check_ssid(arg):

296 ssid_value = ssid.SSID(arg)

297 if not ssid_value.is_valid():

298 if not ssid_value.has_allowed_length():

299 print ’the password must be between 1 to 32 characters long’

300 if not ssid_value.has_only_allowed_chars():

301 print ’the ssid must only contain following special characters: %s’ %

ssid_value.get_allowed_chars()

302

303 return False

304 else:

305 return True

306

307 def check_domain(arg):

308 domain_value = domain.Domain(arg)

309 if not domain_value.is_valid():

310 if not domain_value.has_allowed_length():

311 print ’the password can only contain up to 255 characters’

312 if not domain_value.has_only_allowed_chars():

313 print ’the domain must only contain following special characters: %s’ %

domain_value.get_allowed_chars()

Tobias Dam 109

A. Source Code

314

315 return False

316 else:

317 return True

318

319 def action_restart_network(arg):

320 print ’restarting network...’

321 #return 0 # TODO implement

322 return call_ansible(’network_config’)

323

324 # add your custom actions here

325 ALLOWED_ACTIONS = {

326 ’set_ssid’: action_set_ssid,

327 ’set_password’: action_set_password,

328 ’set_tor_ssid’: action_set_tor_ssid,

329 ’set_tor_password’: action_set_tor_password,

330 ’restart_wlan’: action_restart_wlan,

331 ’enable_tor’: action_set_tor,

332 ’restart_tor’: action_restart_tor,

333 ’enable_vpn’: action_set_vpn,

334 ’restart_vpn’: action_restart_vpn,

335 ’enable_ssh’: action_set_ssh,

336 ’restart_ssh’: action_restart_ssh,

337 ’enable_apate’: action_set_apate,

338 ’restart_apate’: action_restart_apate,

339 ’parse_logs’: action_parse_logs,

340 ’generate_profile’: action_generate_profile,

341 ’delete_profile’: action_delete_profile,

342 ’restart_network’: action_restart_network

343 }

344

345 #

346 # calls ansible and executes the given tag locally

347 #

348 def call_ansible(tag):

349 return subprocess.call([ANSIBLE_COMMAND, ’-i’, ANSIBLE_INVENTORY, ANSIBLE_PLAY,

"--tags", tag, "--connection=local"])

350

351 #

352 # write the custom json "data" to the fact with the given name "rolename"

353 #

Tobias Dam 110

A. Source Code

354 def write_role(rolename, data):

355 p = path.join(FACTS_DIR, rolename + ’.fact’)

356 try:

357 with open(p, ’r’) as data_file:

358 js = json.load(data_file)

359 except IOError:

360 js = {}

361

362 js = merge(js, data)

363 with open(p, ’w+’) as data_file:

364 json.dump(js, data_file, indent=4)

365

366 # return values:

367 # 0: ok

368 # 1: syntax error

369 # 2: invalid number of arguments

370 # 3: invalid action

371 def main():

372 # append empty second parameter if none given

373 if len(sys.argv) == 2:

374 sys.argv.append(’’)

375

376 if len(sys.argv) !=3:

377 usage(2)

378

379 action = sys.argv[1]

380 args = sys.argv[2]

381

382 # check if requested action is valid

383 if sys.argv[1] in ALLOWED_ACTIONS:

384 print "action: %s" % action

385 return ALLOWED_ACTIONS[action](args)

386 else:

387 usage(3)

388

389 def usage(ex):

390 print "usage: %s <action> <args>" % sys.argv[0]

391 print "allowed actions:"

392 for action in ALLOWED_ACTIONS:

393 print " %s" % action

394 exit(ex)

Tobias Dam 111

A. Source Code

395

396

397 if __name__ == "__main__":

398 exit(main())

Tobias Dam 112

Bibliography

[1] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and technology,” in 2012 IEEE

Symposium on Security and Privacy. IEEE, 2012, pp. 413–427.

[2] P. Wood, B. Nahorney, K. Chandrasekar, S. Wallace, K. Haley et al., “Symantec Internet Security

Threat Report,” Volume, vol. 21, 2016.

[3] CENTRE FOR INTERNATIONAL GOVERNANCE INNOVATION & IPSOS. (2014) Cigi-ipsos

global survey on internet security and trust. (last access: 08.02.2016). [Online]. Available:

https://www.cigionline.org/internet-survey

[4] E. W. Felten and J. A. Halderman, “Digital rights management, spyware, and security,” IEEE Com-

puter Society, 2006.

[5] X. d. C. de Carnavalet and M. Mannan, “Killed by proxy: Analyzing client-end tls interception

software,” in Network and Distributed System Security Symposium (NDSS 2016), San Diego, CA,

USA, 2016.

[6] K. Kopper, The Linux Enterprise Cluster: build a highly available cluster with commodity hardware

and free software. No Starch Press, 2005.

[7] M. Schwartzkopff, Clusterbau: Hochverfügbarkeit mit pacemaker, OpenAIS, heartbeat und LVS:

hochverfügbare Linux-Server. O’Reilly Germany, 2010.

[8] The OpenBSD Project. OpenBSD PF: Firewall Redundancy (CARP and pfsync). (last access:

04.07.2016). [Online]. Available: https://www.openbsd.org/faq/pf/carp.html

[9] D. C. Plummer, “Ethernet address resolution protocol: Or converting network protocol

addresses to 48.bit ethernet address for transmission on ethernet hardware,” Internet Requests

for Comments, RFC Editor, STD 37, November 1982, http://www.rfc-editor.org/rfc/rfc826.txt.

[Online]. Available: http://www.rfc-editor.org/rfc/rfc826.txt

Tobias Dam 113

https://www.cigionline.org/internet-survey
https://www.openbsd.org/faq/pf/carp.html
http://www.rfc-editor.org/rfc/rfc826.txt
http://www.rfc-editor.org/rfc/rfc826.txt

Bibliography

[10] K. R. Fall and W. R. Stevens, TCP/IP illustrated, volume 1: The protocols. addison-Wesley, 2011,

ch. 4, pp. 165–180.

[11] R. Philip, “Securing wireless networks from arp cache poisoning,” Master’s thesis, 2007.

[12] N. R. Samineni, F. A. Barbhuiya, and S. Nandi, “Stealth and semi-stealth mitm attacks, detection

and defense in ipv4 networks,” in Parallel Distributed and Grid Computing (PDGC), 2012 2nd

IEEE International Conference on. IEEE, 2012, pp. 364–367.

[13] A. Lockhart, Network security hacks. " O’Reilly Media, Inc.", 2006.

[14] D. Bruschi, A. Ornaghi, and E. Rosti, “S-arp: a secure address resolution protocol,” in Computer

Security Applications Conference, 2003. Proceedings. 19th Annual. IEEE, 2003, pp. 66–74.

[15] W. Lootah, W. Enck, and P. McDaniel, “Tarp: Ticket-based address resolution protocol,” Computer

Networks, vol. 51, no. 15, pp. 4322–4337, 2007.

[16] S. Y. Nam, D. Kim, J. Kim et al., “Enhanced arp: preventing arp poisoning-based man-in-the-

middle attacks,” IEEE communications letters, vol. 14, no. 2, pp. 187–189, 2010.

[17] C. Neuman, T. Yu, S. Hartman, and K. Raeburn, “The kerberos network authentication service

(v5),” Internet Requests for Comments, RFC Editor, RFC 4120, July 2005, http://www.rfc-

editor.org/rfc/rfc4120.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4120.txt

[18] B. Bakhache and R. Rostom, “Kerberos secured address resolution protocol (karp),” in Digital In-

formation and Communication Technology and its Applications (DICTAP), 2015 Fifth International

Conference on. IEEE, 2015, pp. 210–215.

[19] St. Pölten University of Applied Sciences. Institute of IT Security Research. (last access:

04.07.2016). [Online]. Available: https://www.fhstp.ac.at/en/research/institute-of-it-security-

research

[20] ——. Usable Privacy Box (upribox). (last access: 04.07.2016). [Online]. Available: https:

//www.fhstp.ac.at/de/forschung/projekte/usable-privacy-box-upribox

[21] Markus Huber. usableprivacy/upribox. (last access: 04.07.2016). [Online]. Available: https:

//github.com/usableprivacy/upribox

[22] R. T. Fielding, J. Gettys, J. C. Mogul, H. F. Nielsen, L. Masinter, P. J. Leach, and

T. Berners-Lee, “Hypertext transfer protocol – http/1.1,” Internet Requests for Comments,

Tobias Dam 114

http://www.rfc-editor.org/rfc/rfc4120.txt
http://www.rfc-editor.org/rfc/rfc4120.txt
http://www.rfc-editor.org/rfc/rfc4120.txt
https://www.fhstp.ac.at/en/research/institute-of-it-security-research
https://www.fhstp.ac.at/en/research/institute-of-it-security-research
https://www.fhstp.ac.at/de/forschung/projekte/usable-privacy-box-upribox
https://www.fhstp.ac.at/de/forschung/projekte/usable-privacy-box-upribox
https://github.com/usableprivacy/upribox
https://github.com/usableprivacy/upribox

Bibliography

RFC Editor, RFC 2616, June 1999, http://www.rfc-editor.org/rfc/rfc2616.txt. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc2616.txt

[23] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-generation onion router,” DTIC

Document, Tech. Rep., 2004.

[24] Red Hat, Inc. Ansible Documentation. (last access: 04.07.2016). [Online]. Available:

https://docs.ansible.com/ansible/index.html

[25] Django Software Foundation. Django: The Web framework for perfectionists with deadlines. (last

access: 04.07.2016). [Online]. Available: https://www.djangoproject.com/

[26] Philippe Biondi. Scapy. (last access: 19.07.2016). [Online]. Available: http://www.secdev.org/

projects/scapy/

[27] Biondi, Philippe and Raynal, Fren and Martini, Sebastien and Kacherginsky, Peter and

Loss, Dirk. Scapy v2.1.1-dev documentation. (last access: 19.07.2016). [Online]. Available:

http://www.secdev.org/projects/scapy/doc/

[28] Sanfilippo, Salvatore. Introduction to Redis. (last access: 19.07.2016). [Online]. Available:

http://redis.io/topics/introduction

[29] ——. Redis Keyspace Notifications. (last access: 19.07.2016). [Online]. Available: http:

//redis.io/topics/notifications

[30] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor discovery for ip version

6 (ipv6),” Internet Requests for Comments, RFC Editor, RFC 4861, September 2007, http:

//www.rfc-editor.org/rfc/rfc4861.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4861.txt

[31] R. M. Hinden and S. E. Deering, “Ip version 6 addressing architecture,” Internet Requests for

Comments, RFC Editor, RFC 2373, July 1998, http://www.rfc-editor.org/rfc/rfc2373.txt. [Online].

Available: http://www.rfc-editor.org/rfc/rfc2373.txt

[32] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan, “Internet group management

protocol, version 3,” Internet Requests for Comments, RFC Editor, RFC 3376, October 2002, http:

//www.rfc-editor.org/rfc/rfc3376.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3376.txt

[33] G. Wissowa, Paulys Realencyclopädie der classischen Altertumswissenschaft. Metzler-Verlag,

1894, vol. I, 2.

Tobias Dam 115

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
https://docs.ansible.com/ansible/index.html
https://www.djangoproject.com/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/
http://www.secdev.org/projects/scapy/doc/
http://redis.io/topics/introduction
http://redis.io/topics/notifications
http://redis.io/topics/notifications
http://www.rfc-editor.org/rfc/rfc4861.txt
http://www.rfc-editor.org/rfc/rfc4861.txt
http://www.rfc-editor.org/rfc/rfc4861.txt
http://www.rfc-editor.org/rfc/rfc2373.txt
http://www.rfc-editor.org/rfc/rfc2373.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc3376.txt
http://www.rfc-editor.org/rfc/rfc3376.txt

Bibliography

[34] B. Aboba, D. Thaler, and L. Esibov, “Link-local multicast name resolution (llmnr),” Internet Re-

quests for Comments, RFC Editor, RFC 4795, January 2007.

[35] S. Cheshire and M. Krochmal, “Multicast dns,” Internet Requests for Comments, RFC

Editor, RFC 6762, February 2013, http://www.rfc-editor.org/rfc/rfc6762.txt. [Online]. Available:

http://www.rfc-editor.org/rfc/rfc6762.txt

[36] M. Anagnostopoulos, G. Kambourakis, P. Kopanos, G. Louloudakis, and S. Gritzalis, “Dns ampli-

fication attack revisited,” Computers & Security, vol. 39, pp. 475–485, 2013.

[37] Kelley, Simon. DNSMASQ. (last access: 04.07.2016). [Online]. Available: http://www.thekelleys.

org.uk/dnsmasq/docs/dnsmasq-man.html

[38] Y. Rekhter, R. G. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear, “Address allocation

for private internets,” Internet Requests for Comments, RFC Editor, BCP 5, February 1996, http:

//www.rfc-editor.org/rfc/rfc1918.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1918.txt

[39] ISO, “Linux Standard Base (LSB) core specification 3.1 – Part 1: Generic specification,” Interna-

tional Organization for Standardization, Geneva, CH, Standard, 2006.

[40] S. McCanne and V. Jacobson, “The bsd packet filter: A new architecture for user-level packet

capture.” in USENIX winter, vol. 46, 1993.

[41] Dirk Loss and Sébastien Mainand and Pierre Lalet and Guillaume Valadona and Alex Chan.

Download and Installation. (last access: 04.07.2016). [Online]. Available: https://github.com/

secdev/scapy/blob/88c1dbac32008bd2af772bb088f93106231b9f94/doc/scapy/installation.rst

Tobias Dam 116

http://www.rfc-editor.org/rfc/rfc6762.txt
http://www.rfc-editor.org/rfc/rfc6762.txt
http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html
http://www.thekelleys.org.uk/dnsmasq/docs/dnsmasq-man.html
http://www.rfc-editor.org/rfc/rfc1918.txt
http://www.rfc-editor.org/rfc/rfc1918.txt
http://www.rfc-editor.org/rfc/rfc1918.txt
https://github.com/secdev/scapy/blob/88c1dbac32008bd2af772bb088f93106231b9f94/doc/scapy/installation.rst
https://github.com/secdev/scapy/blob/88c1dbac32008bd2af772bb088f93106231b9f94/doc/scapy/installation.rst

	1 Introduction
	1.1 Problem
	1.2 Pivotal Questions and Main Contributions
	1.3 Structure of the Thesis

	2 Theoretical Background & State-of-the-Art
	2.1 ARP
	2.2 ARP Spoofing
	2.3 Defence Measures Against ARP Spoofing
	2.3.1 S-ARP
	2.3.2 TARP
	2.3.3 MR-ARP
	2.3.4 KARP

	2.4 Usable Privacy Box (upribox)
	2.5 Ansible
	2.6 Django
	2.7 Scapy
	2.8 Redis
	2.9 Neighbor Discovery Protocol
	2.10 Internet Group Management Protocol

	3 Design
	3.1 General
	3.2 Apate
	3.3 Modes of Operation
	3.3.1 Holistic Spoofing
	3.3.2 Selective Spoofing

	3.4 Host Discovery Methods
	3.4.1 Traditional approach
	3.4.2 IGMP general query requests

	4 Evaluation and Results
	4.1 Methodology
	4.2 Changes of Existing upribox Ansible Roles
	4.3 New Ansible Role
	4.4 Apate
	4.4.1 Requirements
	4.4.2 General Information
	4.4.3 Holistic Spoofing
	4.4.4 Selective Spoofing
	4.4.5 Host Discovery Methods

	4.5 Apate Redis
	4.6 Util
	4.7 Changes to the Django Web Interface
	4.8 Test Environment
	4.9 Results

	5 Discussion
	5.1 Answering the Research Questions
	5.1.1 How is it possible to increase Internet privacy with the help of ARP spoofing?
	5.1.2 How can a found approach be implemented?
	5.1.3 Which possibilities except ARP spoofing could be used for increasing the Internet privacy?

	5.2 Criticism of the Thesis and the Implemented Approach
	5.3 Future Work
	5.3.1 Enhancing the Web Interface
	5.3.2 Migration to IPv6

	6 Conclusion
	A Source Code
	A.1 tasks/main.yml
	A.2 tasks/apate_state
	A.3 handlers/main.yml
	A.4 templates/apate
	A.5 templates/apate.service
	A.6 templates/logrotate.j2
	A.7 templates/config.json
	A.8 environments/development/group_vars/all.yml
	A.9 environments/production/group_vars/all.yml
	A.10 files/apate
	A.10.1 apate.py
	A.10.2 lib/apate_redis.py
	A.10.3 lib/daemon_app.py
	A.10.4 lib/extended_runner.py
	A.10.5 lib/misc_thread.py
	A.10.6 lib/sniff_thread.py
	A.10.7 lib/util.py
	A.10.8 requirements.txt

	A.11 upribox_interface
	A.11.1 urls.py
	A.11.2 more/views.py
	A.11.3 more/jobs.py
	A.11.4 more/templates/more.html

	A.12 django/files/upri-config.py

	References

